机器学习【西瓜书/南瓜书】--- 第2章模型评估与选择(下)(学习笔记+公式推导)

简介: 本博客为博主在学习 机器学习【西瓜书 / 南瓜书】过程中的学习笔记,每一章都是对《西瓜书》、《南瓜书》内容的总结和提炼笔记,博客可以作为各位读者的辅助思考,也可以做为读者快读书籍的博文,本博客对西瓜书所涉及公式进行详细的推理以及讲解,本人认为,不推导公式所学得的知识是没有深度的,是很容易忘记的,有些公式推导起来并不复杂,只是被看似复杂的数学表达式所“吓唬”,希望大家拿上纸笔,跟着博主一起学习,一起推导。

前言

本博客为博主在学习 机器学习西瓜书/南瓜书】过程中的学习笔记,每一章都是对《西瓜书》、《南瓜书》内容的总结和提炼笔记,博客可以作为各位读者的辅助思考,也可以做为读者快读书籍的博文,本博客对西瓜书所涉及公式进行详细的推理以及讲解,本人认为,不推导公式所学得的知识是没有深度的,是很容易忘记的,有些公式推导起来并不复杂,只是被看似复杂的数学表达式所“吓唬”,希望大家拿上纸笔,跟着博主一起学习,一起推导。


对于哪一部分的推导不理解的,可以评论出来,博主看到之后会尽快回复!


❗️ 注:本篇文章是第2章,其涵盖内容较为多和杂,读者在读本章节时,做到有所印象即可,其各种判断方法可以结合后续文章中的样例进行更进一步的理解。


本文只是第二章知识总结的一半,另一半见博客:机器学习【西瓜书/南瓜书】— 第2章模型评估与选择(上)(学习笔记+公式推导)


2.4 比较检验

我们希望比较的是 泛化性能,但是我们通过实验评估方法获得的是测试集上的性能,两者未必相同;测试集上的性能与测试集的选择有很大的关系,且对于不同大小的测试集也会得到不同的结果;机器学习算法本身具有一定的随机性:即用相同的参数设置在同一个测试集上运行多次,产生的结果可能也不一样。


image.png

2.4.1 假设检验

image.png

image.png

image.png

image.png

image.png

2.4.2 交叉验证 t 检验

image.png

image.png

2.4.3McNemar检验

image.png

2.4.4Friedman检验与Nemenyi 后续检验

image.png

image.png

image.png

image.png

image.png

2.5 偏差与方差

image.png

image.png

推导过程:

image.png

image.png

image.png

证毕!!!

我们来复盘一下:

偏差度量了学习算法的期望预测与真实结果的偏离程度,刻画了学习算法本身的拟合能力

方差度量了同样大小的训练集的变动所导致的学习性能的变化,刻画了数据扰动所造成的影响

噪声表达了当前任务上任何学习算法所能达到的期望泛化误差的下界,刻画了学习问题本身的难度

偏差-方差分解说明,泛化性能是由学习算法的能力、数据的充分性以及学习任务本身的难度所共同决定的,给定学习任务,为了取得更好的性能,则需偏差较小,即能充分拟合数据,并使得方差较小,即使得数据扰动产生的影响小。


一般来说,偏差和方差是有冲突的,这成为 偏差-方差窘境 (biasvariance dilemma),如下图所示,给定学习任务,假定我们能控制学习算法的训练程度,那么当训练不足的时候,学习器的拟合能力不够强,训练数据的扰动不足以使得学习器产生显著的变化,此时偏差主导了泛化错误率;随着训练程度的加深,学习器的拟合能力逐渐增强,训练数据发生的扰动渐渐能被学习器所学到,方差逐渐主导了泛化错误率;在训练程度充足后,学习器的拟合能力已经非常强,训练数据的轻微扰动都会导致学习器发生显著的变化,若训练数据自身的、非全局的性质被学习器学到了,则发生过拟合。

image.png


image.png

目录
相关文章
|
4天前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
45 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
2月前
|
人工智能 JSON 算法
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
阿里云的人工智能平台 PAI,作为一站式、 AI Native 的大模型与 AIGC 工程平台,为开发者和企业客户提供了 Qwen2.5-Coder 系列模型的全链路最佳实践。本文以Qwen2.5-Coder-32B为例,详细介绍在 PAI-QuickStart 完成 Qwen2.5-Coder 的训练、评测和快速部署。
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
|
25天前
|
编解码 机器人 测试技术
技术实践 | 使用 PAI+LLaMA Factory 微调 Qwen2-VL 模型快速搭建专业领域知识问答机器人
Qwen2-VL是一款具备高级图像和视频理解能力的多模态模型,支持多种语言,适用于多模态应用开发。通过PAI和LLaMA Factory框架,用户可以轻松微调Qwen2-VL模型,快速构建文旅领域的知识问答机器人。本教程详细介绍了从模型部署、微调到对话测试的全过程,帮助开发者高效实现定制化多模态应用。
|
2月前
|
机器学习/深度学习 PyTorch API
优化注意力层提升 Transformer 模型效率:通过改进注意力机制降低机器学习成本
Transformer架构自2017年被Vaswani等人提出以来,凭借其核心的注意力机制,已成为AI领域的重大突破。该机制允许模型根据任务需求灵活聚焦于输入的不同部分,极大地增强了对复杂语言和结构的理解能力。起初主要应用于自然语言处理,Transformer迅速扩展至语音识别、计算机视觉等多领域,展现出强大的跨学科应用潜力。然而,随着模型规模的增长,注意力层的高计算复杂度成为发展瓶颈。为此,本文探讨了在PyTorch生态系统中优化注意力层的各种技术,
83 6
优化注意力层提升 Transformer 模型效率:通过改进注意力机制降低机器学习成本
|
1月前
|
机器学习/深度学习 人工智能 算法
人工智能浪潮下的编程实践:构建你的第一个机器学习模型
在人工智能的巨浪中,每个人都有机会成为弄潮儿。本文将带你一探究竟,从零基础开始,用最易懂的语言和步骤,教你如何构建属于自己的第一个机器学习模型。不需要复杂的数学公式,也不必担心编程难题,只需跟随我们的步伐,一起探索这个充满魔力的AI世界。
51 12
|
2月前
|
机器学习/深度学习 Python
机器学习中评估模型性能的重要工具——混淆矩阵和ROC曲线。混淆矩阵通过真正例、假正例等指标展示模型预测情况
本文介绍了机器学习中评估模型性能的重要工具——混淆矩阵和ROC曲线。混淆矩阵通过真正例、假正例等指标展示模型预测情况,而ROC曲线则通过假正率和真正率评估二分类模型性能。文章还提供了Python中的具体实现示例,展示了如何计算和使用这两种工具来评估模型。
69 8
|
2月前
|
机器学习/深度学习 Python
机器学习中模型选择和优化的关键技术——交叉验证与网格搜索
本文深入探讨了机器学习中模型选择和优化的关键技术——交叉验证与网格搜索。介绍了K折交叉验证、留一交叉验证等方法,以及网格搜索的原理和步骤,展示了如何结合两者在Python中实现模型参数的优化,并强调了使用时需注意的计算成本、过拟合风险等问题。
69 6
|
2月前
|
机器学习/深度学习 数据采集 算法
从零到一:构建高效机器学习模型的旅程####
在探索技术深度与广度的征途中,我深刻体会到技术创新既在于理论的飞跃,更在于实践的积累。本文将通过一个具体案例,分享我在构建高效机器学习模型过程中的实战经验,包括数据预处理、特征工程、模型选择与优化等关键环节,旨在为读者提供一个从零开始构建并优化机器学习模型的实用指南。 ####
|
2月前
|
人工智能 边缘计算 JSON
DistilQwen2 蒸馏小模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
本文详细介绍在 PAI 平台使用 DistilQwen2 蒸馏小模型的全链路最佳实践。
|
2月前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的线性回归模型
本文深入探讨了机器学习中广泛使用的线性回归模型,从其基本概念和数学原理出发,逐步引导读者理解模型的构建、训练及评估过程。通过实例分析与代码演示,本文旨在为初学者提供一个清晰的学习路径,帮助他们在实践中更好地应用线性回归模型解决实际问题。