python-opencv(10)图像金字塔

简介: 文章目录1. 图像金字塔特点2. 向下采样2.1. 特点

1. 图像金字塔特点

图像金字塔是图像多尺度表达的一种,是一种以多分辨率来解释图像的有效但概念简单的结构。一幅图像的金字塔是一系列以金字塔形状排列的分辨率逐步降低,且来源于同一张原始图的图像集合。其通过梯次向下采样获得,直到达到某个终止条件才停止采样。我们将一层一层的图像比喻成金字塔,层级越高,则图像越小,分辨率越低。

2. 向下采样

2.1. 特点

从第i层获取第i+1层 Gi→Gi+1

  1. 对图像Gi进行高斯核卷积。
  2. 删除所有的偶数行和列。

原始图像 M×N→处理结果 M/2×N/2,每次处理后,结果图像是原来的1/4。重复执行该过程,构造图像金字塔。

注意:向下会丢失信息。

2.2. 相关函数与程序实现

函数:dst=cv2.pyrDown(src)

dst—向下取样结果

src—原始图像

python代码

#%%向下采样
import cv2
img1 = cv2.imread(r"C:\Users\lihuanyu\Desktop\opencv\image\man.bmp")
r1=cv2.pyrDown(img1)
r2=cv2.pyrDown(r1)
r3=cv2.pyrDown(r2)
cv2.imshow("original",img1)
cv2.imshow("PyrDown1",r1)
cv2.imshow("PyrDown2",r2)
cv2.imshow("PyrDown3",r3)
cv2.waitKey()
cv2.destroyAllWindows()

结果

3. 向上采样

3.1. 特点

  1. 在每个方向上扩大为原来的2倍,新增的行和列以0填充。
  2. 使用与“向下采用”同样的卷积核乘以4,获取“新增像素”的新值。

注意:

3. 放大后的图像比原始图像要模糊。

4. 向上采样、向下采样不是互逆操作。经过两种操作后,无法恢复原有图像。

3.2. 相关函数与程序实现

函数:dst=cv2.pyrUp(src)

dst—向上取样结果

src—原始图像

python代码

#%%向上采样
import cv2
img1 = cv2.imread(r"C:\Users\lihuanyu\Desktop\opencv\image\p.bmp")
r1=cv2.pyrUp(img1)
r2=cv2.pyrUp(r1)
r3=cv2.pyrUp(r2)
cv2.imshow("original",img1)
cv2.imshow("PyrDown1",r1)
cv2.imshow("PyrDown2",r2)
cv2.imshow("PyrDown3",r3)
cv2.waitKey()
cv2.destroyAllWindows()

结果

4. 拉普拉斯金子塔

4.1. 特点

拉普拉斯金字塔(Laplacianpyramid): 用来从金字塔低层图像重建上层未采样图像,在数字图像处理中也即是预测残差,可以对图像进行最大程度的还原,配合高斯金字塔一起使用。

4.2. 相关函数与程序实现

函数:Li = Gi - PyrUp(PyrDown(Gi))

Gi ,原始图像

Li ,拉普拉斯金字塔图像

python代码

#%%
import cv2
o=cv2.imread(r"C:\Users\lihuanyu\Desktop\opencv\image\lena.bmp")
od=cv2.pyrDown(o)
odu=cv2.pyrUp(od)
lapPyr=o-odu
cv2.imshow("original",o)
cv2.imshow("lapPyr",lapPyr)
cv2.waitKey()
cv2.destroyAllWindows()

结果

相关文章
|
1月前
|
计算机视觉
Opencv学习笔记(三):图像二值化函数cv2.threshold函数详解
这篇文章详细介绍了OpenCV库中的图像二值化函数`cv2.threshold`,包括二值化的概念、常见的阈值类型、函数的参数说明以及通过代码实例展示了如何应用该函数进行图像二值化处理,并展示了运行结果。
332 0
Opencv学习笔记(三):图像二值化函数cv2.threshold函数详解
|
2月前
|
机器学习/深度学习 算法 TensorFlow
动物识别系统Python+卷积神经网络算法+TensorFlow+人工智能+图像识别+计算机毕业设计项目
动物识别系统。本项目以Python作为主要编程语言,并基于TensorFlow搭建ResNet50卷积神经网络算法模型,通过收集4种常见的动物图像数据集(猫、狗、鸡、马)然后进行模型训练,得到一个识别精度较高的模型文件,然后保存为本地格式的H5格式文件。再基于Django开发Web网页端操作界面,实现用户上传一张动物图片,识别其名称。
93 1
动物识别系统Python+卷积神经网络算法+TensorFlow+人工智能+图像识别+计算机毕业设计项目
|
2月前
|
算法 计算机视觉
opencv图像形态学
图像形态学是一种基于数学形态学的图像处理技术,它主要用于分析和修改图像的形状和结构。
49 4
|
9天前
|
机器学习/深度学习 TensorFlow 算法框架/工具
利用Python和TensorFlow构建简单神经网络进行图像分类
利用Python和TensorFlow构建简单神经网络进行图像分类
29 3
|
1月前
|
存储 JSON API
Python| 如何使用 DALL·E 和 OpenAI API 生成图像(1)
Python| 如何使用 DALL·E 和 OpenAI API 生成图像(1)
42 7
Python| 如何使用 DALL·E 和 OpenAI API 生成图像(1)
|
2月前
|
机器学习/深度学习 人工智能 算法
植物病害识别系统Python+卷积神经网络算法+图像识别+人工智能项目+深度学习项目+计算机课设项目+Django网页界面
植物病害识别系统。本系统使用Python作为主要编程语言,通过收集水稻常见的四种叶片病害图片('细菌性叶枯病', '稻瘟病', '褐斑病', '稻瘟条纹病毒病')作为后面模型训练用到的数据集。然后使用TensorFlow搭建卷积神经网络算法模型,并进行多轮迭代训练,最后得到一个识别精度较高的算法模型,然后将其保存为h5格式的本地模型文件。再使用Django搭建Web网页平台操作界面,实现用户上传一张测试图片识别其名称。
121 22
植物病害识别系统Python+卷积神经网络算法+图像识别+人工智能项目+深度学习项目+计算机课设项目+Django网页界面
|
2月前
|
机器学习/深度学习 人工智能 算法
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
鸟类识别系统。本系统采用Python作为主要开发语言,通过使用加利福利亚大学开源的200种鸟类图像作为数据集。使用TensorFlow搭建ResNet50卷积神经网络算法模型,然后进行模型的迭代训练,得到一个识别精度较高的模型,然后在保存为本地的H5格式文件。在使用Django开发Web网页端操作界面,实现用户上传一张鸟类图像,识别其名称。
108 12
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
|
2月前
|
存储 计算机视觉
Opencv的基本操作(一)图像的读取显示存储及几何图形的绘制
本文介绍了使用OpenCV进行图像读取、显示和存储的基本操作,以及如何绘制直线、圆形、矩形和文本等几何图形的方法。
Opencv的基本操作(一)图像的读取显示存储及几何图形的绘制
|
1月前
|
JSON API 数据格式
Python| 如何使用 DALL·E 和 OpenAI API 生成图像(2)
Python| 如何使用 DALL·E 和 OpenAI API 生成图像(2)
48 0
Python| 如何使用 DALL·E 和 OpenAI API 生成图像(2)
|
3月前
|
机器学习/深度学习 人工智能 TensorFlow
利用Python和TensorFlow实现简单图像识别
【8月更文挑战第31天】在这篇文章中,我们将一起踏上一段探索人工智能世界的奇妙之旅。正如甘地所言:“你必须成为你希望在世界上看到的改变。” 通过实践,我们不仅将学习如何使用Python和TensorFlow构建一个简单的图像识别模型,而且还将探索如何通过这个模型理解世界。文章以通俗易懂的方式,逐步引导读者从基础到高级,体验从编码到识别的整个过程,让每个人都能在AI的世界中看到自己的倒影。