猿创征文|时间序列分析算法之二次指数平滑法和三次指数平滑法详解+Python代码实现

简介: 猿创征文|时间序列分析算法之二次指数平滑法和三次指数平滑法详解+Python代码实现

前言


好久没来更时间序列分析算法了,今天把平滑法这一个常用且宽泛的时序算法给补完。这篇文章完结了就代表整个传统时序预测算法讲完了。文章内容是紧接着上篇文章:


一文速学-时间序列分析算法之指数平滑法详解+Python代码实现_fanstuck的博客-CSDN博客_指数平滑法python


ffcc7ff817f54fc28f3e0e7afcfe2413.png


下篇文章就是详解单变量时间序列预测的所有模型和算法了。此系列将会一直写到现在比较火热的LSTM短时时序预测以及更多先进且方便的时序预测算法。

希望读者看完能够在评论区提出错误或者看法,博主会长期维护博客做及时更新。


二次指数平滑法(Holt’s linear trend method)


从我们之前学过的简单移动平均法和在此基础之上衍生出来的二次移动平均法(又称趋势移动平均法),一次指数平滑法和二次指数平滑法二者关系与之类似,可以说原理都一样。


1.定义


在一次指数平滑法的基础之上再去做趋势移动。当时间序列的变动出现直线趋势时,用一次指数平滑法来进行预测仍将存在着明显的滞后偏差。修正的方法也是在一次指数平滑的基础上再进行二次指数平滑,利用滞后偏差的规律找出曲线的发展方向和发展趋势,然后建立直线趋势预测模型,故称为二次指数平滑法。


2.公式

我们再来看看一次指数平滑法的公式:

设时间序列为gif.gif为加权系数,gif.gif,一次指数平滑公式为:

cc2d423be48c4a2eb4381d072abf45f8.pnga0b73ac45a104f978c6d1fff7943afbc.png


gif.gif为t+1时刻的预测值,即t时刻的平滑值gif.gifgif.gif为t时刻的实际值gif.gif为t时刻的预测值,即为上一时刻的平滑值gif.gif.很明显该公式是由移动平均公式改进而来。

我们和二次移动平均法一样如法炮制计算。


二次指数平滑值

c68684917f41484f8f259c4fd7706333.png


公式中:

  • gif.gif:第t周期的二次指数平滑值
  • S^{(1)}_t:第t周期的一次指数平滑值
  • :gif.gif第t-1周期的二次指数平滑值
  • :gif.gif加权系数(平滑系数)

很容易看出二次指数平滑法是对一次指数平滑值再一次指数平滑的方法。所以说还得使用一次指数平滑法之后再作计算。


二次指数平滑数学模型:


4bdcdb46dc494b01889a5e749f805ff5.png

3.案例实现


这里我们不再使用上次化学实验的案例1,换个一个案例:

以我国 1965~1985 年的发电总量资料为例,试用二次指数平滑法预 测 1986 年和 1987 年的发电总量:



d62090598ae9495486fe83a76fb2ccb3.png

那么我们只需要读入数据再将我们之前写的SES一次平滑指数法引入就好了:

import pandas as pd
import numpy as np
import Ipynb_importer
import SES
df=pd.read_excel('try_test2.xlsx')

首先我们获取一次平滑值,平滑系数还是为0.3:

df=pd.read_excel('try_test2.xlsx')
x=df['t']
y=df['发电总量y']
y_1=SES(y,1,0.3)
y_1


29832afea2b043f2a87ab304791eddf5.png


我们获取二次平滑值只需要将一次平滑值再次代入就可以得到:

y_2=SES(y_2,1,0.3)
y_2

50b5417c1ab6458ca92a0da844d27c02.png


那么如果我们要预测t为21时刻的值时,我们需要得到a和b两个参数的值:

#我们需要传入一次平滑预测值和二次平滑预测值,以及t值、平滑系数a和给予的T
def SES_quadratic(y_1,y_2,s,t,T):
    a=2*y_1[t-1]-y_2[t-1]
    b=(s/(1-s))*(y_1[t-1]-y_2[t-1])
    y=a+b*T
    return y
SES_quadratic(y_1,y_2,0.3,21,1)


这样我们就得到了 t为22时刻的预测值:



b994568c019644399e7d5fa81674f647.png

3b62fc610ef3493a9151d32a476a7d8a.png


三次指数平滑法(Holt-Winters’ seasonal method)


1.定义


一次指数平滑法针对没有趋势和季节性的序列,二次指数平滑法针对有趋势但是没有季节特性的时间序列,三次指数平滑法则可以预测具有趋势和季节性的时间序列。术语“Holt-Winter”指的是三次指数平滑。该方法分为预测方程和三个平滑方程,一个是水平,一个是趋势,一个是季节性成分,采用平滑参数和,用代表季节性周期,例如一年中季节的数量,季的数量,月的数量。


直接我们在将时间序列数据的时候谈到,时间序列有一下四个时序特性:


长期趋势(Trend)

季节变化(Season)

循环波动(Cyclic)

不规则波动(Irregular)

其中季节变化也正是三次指数平滑法所代表的平滑。下面网址就是全述季节性预测算法:


7.3 Holt-Winters’ seasonal method | Forecasting: Principles and Practice (2nd ed)


之前我在第一篇文章也说过:


四种影响因素通常有两种组合方式:


一种是加法模型:Y=T+S+C+I,认为数据的发展趋势是4种影响因素相互叠加的结果


一种是乘法模型:Y=T*S*C*I,认为数据的发展趋势是4种因素相互综合的结果


该方法有两种变体,根据季节性成分的性质不同而不同。当季节变化在整个系列中大致恒定时,优选加法模型,而当季节变化与系列水平成比例时,优选乘法模型。使用相加法,季节性分量在观测序列的尺度中以绝对值表示,在水平方程中,通过减去季节性分量对序列进行季节性调整。在每年内,季节性成分的总和将接近零。使用乘法方法,季节性成分以相对项(百分比)表示,通过除以季节性成分对序列进行季节性调整。每年内,季节性成分总计约为m。


那么Holt-Winters 加法模型为:


e71d5c54a46c439ea8ec3b92f99bf89b.png


其中k是(h−1) /m的整数部分,这确保用于预测的季节性指数的估计来自样本的最后一年。水平方程显示了经季节性调整的观测值(gif.gif)之间的加权平均值,以及非季节性预测(gif.gif)对于时间t,趋势方程与Holt的线性方法相同。季节方程显示当前季节指数(gif.gif)之间的加权平均值 ,以及去年同一季节(即m个时间段之前)的季节性指数。


季节性分量的方程通常表示为:

2a4dad749ea649ceaadeb26d98380d13.png

如果我们替换ℓ从上述分量形式的水平的平滑方程,我们得到


5491b9bca3cd47229d7dd28447872110.png

相应的,乘法模型为:

6575b0729dfa4cdb98c8e0c95a177a2b.png


2.公式


我们大可不需要再次重新认识三次指数平滑法,三次平滑法无非就是在二次平滑法的基础之上再次平滑一次而已。那么推导公式就更加简单了:


0352da113e494eaa85dc1487a08a5f2a.png

其三次平滑值的公式为:

94d9fb2e5be64f83955f6f1b7c9a584d.png


式中gif.gif为三次指数平滑值。

三次指数平滑法的预测模型为:


2fa434a79fca43db9d180e5d553b7087.png

3.案例实现


我们的案例依旧和二次指数平滑法的案例一样,省的大家再去理解其他案例场景。

我们可以先进行绘图描点看看这些数据是否用三次指数平滑法更合适:


import matplotlib.pyplot as plt
df=pd.read_excel('try_test2.xlsx')
x=df['t']
y=df['发电总量y']
plot1 = plt.plot(x, y, '*', label='origin data')
plt.title('metric_polyfit')
plt.show()

7d44751793c941d5989c3cf4ff67bb4f.png


那么我们发现这个案例的数据是呈线性递增趋势,那么我们还得换个案例。这里选用上次化学反应的案例最好用。


以在某化学反应里,测得生成物浓度y(%)与时间t(min)的数据为例子:


290aa62a71134009b8819aa7e7dc92e6.png

8065625a4d6541c0979e99466019dc80.png

通过实际数据序列呈非线性递增趋势,采用三次指数平滑预测方法。


确定指数平滑的初始值和权系数(平滑系数)a。设一次、二次、三次指数平滑的初始值为最早三个数据的平均值。即:


gif.gif


gif.gif为0.3,那么我们将gif.gif先求出来:

y_1=SES(y,3,0.3)
y_2=SES(y_1,3,0.3)
y_3=SES(y_2,3,0.3)


之后我们使用python写出代码就好了:

#我们需要传入一次平滑预测值、二次平滑预测值和三次平滑预测值,以及t值、平滑系数a和给予的T
def SES_triple(y_1,y_2,y_3,s,t,T):
    t=t-1
    a=y_1[t]*3-y_2[t]*3+y_3[t]
    b=(s/(2*((1-s)**2)))*((6-5*s)*y_1[t]-2*(5-4*s)*y_2[t]+(4-3*s)*y_3[t])
    c=((s**2)/(2*((1-s)**2)))*(y_1[t]-2*y_2[t]+y_3[t])
    y=a+b*T+c*T**2
    return y
SES_triple(y_1,y_2,y_3,0.3,16,1)

393ca143bf704bb79ab1966fbfe82e0e.png


加权系数a的选择

在指数平滑法中,预测成功的关键是 a 的选择。a 的大小规定了在新预测值中新数据和原预测值所占的比例。a 值愈大,新数据所占的比重就愈大,原预测值所占比重就愈小,反之亦然。


       理论界一般认为有以下方法可供选择:


       经验判断法。这种方法主要依赖于时间序列的发展趋势和预测者的经验做出判断。


1、当时间序列呈现较稳定的水平趋势时,应选较小的α值,一般可在0.05~0.20之间取值;


2、当时间序列有波动,但长期趋势变化不大时,可选稍大的α值,常在0.1~0.4之间取值;


3、当时间序列波动很大,长期趋势变化幅度较大,呈现明显且迅速的上升或下降趋势时,宜选择较大的α值,如可在0.6~0.8间选值,以使预测模型灵敏度高些,能迅速跟上数据的变化;


4、当时间序列数据是上升(或下降)的发展趋势类型,α应取较大的值,在0.6~1之间。


       试算法。根据具体时间序列情况,参照经验判断法,来大致确定额定的取值范围,然后取几个α值进行试算,比较不同α值下的预测标准误差,选取预测标准误差最小的α。


       在实际应用中预测者应结合对预测对象的变化规律做出定性判断且计算预测误差,并要考虑到预测灵敏度和预测精度是相互矛盾的,必须给予二者一定的考虑,采用折中的α值。

目录
相关文章
|
13天前
|
数据采集 缓存 定位技术
网络延迟对Python爬虫速度的影响分析
网络延迟对Python爬虫速度的影响分析
|
12天前
|
算法
分享一些提高二叉树遍历算法效率的代码示例
这只是简单的示例代码,实际应用中可能还需要根据具体需求进行更多的优化和处理。你可以根据自己的需求对代码进行修改和扩展。
|
15天前
|
数据采集 存储 JSON
Python爬虫开发中的分析与方案制定
Python爬虫开发中的分析与方案制定
|
22天前
|
数据可视化 开发者 Python
Python GUI开发:Tkinter与PyQt的实战应用与对比分析
【10月更文挑战第26天】本文介绍了Python中两种常用的GUI工具包——Tkinter和PyQt。Tkinter内置于Python标准库,适合初学者快速上手,提供基本的GUI组件和方法。PyQt基于Qt库,功能强大且灵活,适用于创建复杂的GUI应用程序。通过实战示例和对比分析,帮助开发者选择合适的工具包以满足项目需求。
72 7
|
21天前
|
存储 数据处理 Python
Python科学计算:NumPy与SciPy的高效数据处理与分析
【10月更文挑战第27天】在科学计算和数据分析领域,Python凭借简洁的语法和强大的库支持广受欢迎。NumPy和SciPy作为Python科学计算的两大基石,提供了高效的数据处理和分析工具。NumPy的核心功能是N维数组对象(ndarray),支持高效的大型数据集操作;SciPy则在此基础上提供了线性代数、信号处理、优化和统计分析等多种科学计算工具。结合使用NumPy和SciPy,可以显著提升数据处理和分析的效率,使Python成为科学计算和数据分析的首选语言。
29 3
|
22天前
|
存储 机器学习/深度学习 算法
Python科学计算:NumPy与SciPy的高效数据处理与分析
【10月更文挑战第26天】NumPy和SciPy是Python科学计算领域的两大核心库。NumPy提供高效的多维数组对象和丰富的数学函数,而SciPy则在此基础上提供了更多高级的科学计算功能,如数值积分、优化和统计等。两者结合使Python在科学计算中具有极高的效率和广泛的应用。
39 2
|
23天前
|
算法 测试技术 开发者
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗;代码审查通过检查源代码发现潜在问题,提高代码质量和团队协作效率。本文介绍了一些实用的技巧和工具,帮助开发者提升开发效率。
25 3
|
22天前
|
分布式计算 Java 开发工具
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
|
27天前
|
数据采集 机器学习/深度学习 搜索推荐
Python自动化:关键词密度分析与搜索引擎优化
Python自动化:关键词密度分析与搜索引擎优化
|
28天前
|
缓存 分布式计算 监控
优化算法和代码需要注意什么
【10月更文挑战第20天】优化算法和代码需要注意什么
18 0