机器学习:随机梯度下降(SGD)与梯度下降(GD)的区别与代码实现。

简介: 机器学习:随机梯度下降(SGD)与梯度下降(GD)的区别与代码实现。

如果想细致的了解:-》梯度下降法

梯度下降法(GD)

假设函数fx, 代价函数cost,有如下表达式:
$$\begin{aligned}f\left( x\right) =w_{1}x_{1}+w_{2}x_{2}+b\\ cost\left( w\right) =\dfrac{1}{n}\sum ^{n}_{i=1}\left( f(x_{i}\right) -y_{i}) \\ w_{1}=w_{1old}-\alpha \dfrac{\partial cos t\left( w\right) }{\partial w_{1}}cos t\left( w\right) \\ w _{2}=w_{2old}-\alpha \dfrac{\partial cos t\left( w\right) }{\partial w_{2}}cos t\left( w\right) \end{aligned}$$
从上面公式,我们得出如下结论:
1.参数w,b每更新一次,就需要计算一次全体数据对相应参数的偏导数,这个计算量是很大的,函数的收敛速度会在数据量很大的时候会很慢。
2.与SGD不同,每一次参数的改变,都能保证cost是朝着全局最小方向移动的。
3.如果cost非凸函数,函数可能会陷入局部最优。

随即梯度下降(SGD)

公式如下:
$$f\left( x\right) =w_{1}x_{1}+w_{2}x_{2}+b$$
$$for (i=0,i<=n,i++)\
cost\left( w\right) =(f(x_i)-y_i)\
w_{1}=w_{1old}-\alpha \dfrac{\partial cos t\left( w\right) }{\partial w_{1}}cos t\left( w\right) \
w
_{2}=w_{2old}-\alpha \dfrac{\partial cos t\left( w\right) }{\partial w_{2}}cos t\left( w\right) $$

从上面公式,得出如下结论:

  1. SGD中每更新一次参数,只计算了1个batch的梯度(上面公式假设batch=1),大大加快了函数的收敛速度。

2.SGD每一次更新参数只考虑了一个数据,可能不会每一次都是朝着全局最优的方向移动,最终可能无法收敛到最小,但是会解决陷入局部最优的问题。

代码实现

以波士顿房价预测为案例
导入数据

import numpy as np
path = 'Desktop/波士顿房价/trian.csv'
data = np.loadtxt(path, delimiter = ",", skiprows=1)
data.shape

分割数据

train = data[:int(data.shape[0]*0.8)]
test = data[int(data.shape[0]*0.8):]
print(train.shape, test.shape)
train_x = train[:,:-1]
train_y = train[:,13:]
test_x = test[:,:-1]
test_y = test[:,13:]
print(train_x.shape, train_y.shape)

class Network:

    def __init__(self, num_weights):
        self.num_weights = num_weights
        self.w = np.random.rand(num_weights, 1)
        self.b = 0

    def forward(self, x):
        z = np.dot(x, self.w) + self.b 
        return z

    def loss(self, z, y):
        cost = (z-y)*(z-y)
        cost = np.mean(cost)
        return cost

    def gradient(self, z, y):
        w = (z-y)*train_x
        w = np.mean(w, axis=0)
        w = np.array(w).reshape([13, 1])
        b = z-y
        b = np.mean(b)
        return w, b

    def update(self, gradient_w, gradient_b, eta):
        self.w = self.w - eta*gradient_w
        self.b = self.b - eta*gradient_b
#梯度下降
    def train_GD(self, items, eta):
        for i in range(items):
            z = self.forward(train_x)
            loss = self.loss(z, train_y)
            gradient_w, gradient_b = self.gradient(z, train_y)
            self.update(gradient_w, gradient_b, eta)
            # if i % 100 == 0:
            test_loss = self.test()
            print('item:', i, 'loss:', loss, 'test_loss:', test_loss)
#随即梯度下降
    def train_SGD(self, num_epochs, batchsize, eta):
        for epoch_id in range(num_epochs):
            np.random.shuffle(train)
            losses = []
            for i in range(0, len(train), batchsize):
                # print(i, batchsize+i)
                mini_batchs = train[i:i + batchsize]
                for iter_id, mini_batch in enumerate(mini_batchs):
                    # print(mini_batch)
                    x = mini_batch[:-1]
                    y = mini_batch[-1]
                    z = self.forward(x)
                    loss = self.loss(z, y)
                    gradient_w, gradient_b = self.gradient(z, y)
                    self.update(gradient_w, gradient_b, eta)
                    losses.append(loss)
            sum = 0
            for i in losses:
                sum += i
            loss_mean = sum/len(losses)
            print('Epoch{}, loss{}, loss_mean{}'.format(epoch_id, loss, loss_mean))

    def test(self):
        z = self.forward(test_x)
        loss = self.loss(z, test_y)
        return loss


net = Network(13)
net.train_GD(100, eta=1e-9)
net.train_SGD(100, 5, 1e-9)


目录
相关文章
|
6天前
|
机器学习/深度学习 人工智能 自然语言处理
机器学习之线性回归与逻辑回归【完整房价预测和鸢尾花分类代码解释】
机器学习之线性回归与逻辑回归【完整房价预测和鸢尾花分类代码解释】
|
6天前
|
机器学习/深度学习 人工智能 自然语言处理
梯度下降求极值,机器学习&深度学习
梯度下降求极值,机器学习&深度学习
23 0
|
6天前
|
机器学习/深度学习 算法 搜索推荐
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
|
6天前
|
机器学习/深度学习 算法 数据可视化
计算机视觉+深度学习+机器学习+opencv+目标检测跟踪+一站式学习(代码+视频+PPT)-2
计算机视觉+深度学习+机器学习+opencv+目标检测跟踪+一站式学习(代码+视频+PPT)
108 0
|
6天前
|
机器学习/深度学习 Ubuntu Linux
计算机视觉+深度学习+机器学习+opencv+目标检测跟踪+一站式学习(代码+视频+PPT)-1
计算机视觉+深度学习+机器学习+opencv+目标检测跟踪+一站式学习(代码+视频+PPT)
63 1
|
2天前
|
机器学习/深度学习 人工智能 分布式计算
【机器学习】协方差和相关性有什么区别?
【5月更文挑战第17天】【机器学习】协方差和相关性有什么区别?
|
3天前
|
机器学习/深度学习 人工智能 算法
【机器学习】平均绝对误差 (MAE) 与均方误差 (MSE) 有什么区别?
【5月更文挑战第17天】【机器学习】平均绝对误差 (MAE) 与均方误差 (MSE) 有什么区别?
|
6天前
|
机器学习/深度学习 传感器 算法
【机器学习】在聚类算法中,使用曼哈顿距离和使用欧式距离有什么区别?
【5月更文挑战第12天】【机器学习】在聚类算法中,使用曼哈顿距离和使用欧式距离有什么区别?
|
6天前
|
机器学习/深度学习 人工智能 算法
【机器学习】K-means和KNN算法有什么区别?
【5月更文挑战第11天】【机器学习】K-means和KNN算法有什么区别?
|
6天前
|
机器学习/深度学习 人工智能 数据挖掘
【机器学习】贝叶斯统计中,“先验概率”和“后验概率”的区别?
【5月更文挑战第11天】【机器学习】贝叶斯统计中,“先验概率”和“后验概率”的区别?

热门文章

最新文章