Python写入MySQL数据库to_sql()一文详解+代码展示

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云数据库 RDS PostgreSQL,集群系列 2核4GB
简介: Python写入MySQL数据库to_sql()一文详解+代码展示

前言


用Python写数据库操作的脚本时,少不了的是写入和读取操作。但这类方法参数说明大多都差不多,例如前段时间写的关于处理JSON文件的两类函数read_json,to_json。读取和写入这两种方法往往都是相对的,而当掌握了Pandas的dataframe数据结构的各种操作时,那么我们的插入方式将可以多种多样,对数据处理的方式也可以相对更加灵活。此篇文章将根据解读官方文档的方式具体使用每个参数的不同赋值,来展示结果。


一、函数基本语法

DataFrame.to_sql(name, con, schema=None, if_exists='fail', 
index=True, index_label=None, chunksize=None, dtype=None)

该函数的具体功能为实现将pandas的数据结构存储对象Dataframe写入到SQL数据库中。其中我们要写入的SQL数据库中是应该存在数据库和表格的,不然会保存。而且该表是有权限能够写入的,这些是前提条件。


二、参数说明


name : string
Name of SQL table.
con : sqlalchemy.engine.Engine or sqlite3.Connection
Using SQLAlchemy makes it possible to use any DB supported by that library. Legacy support is provided for sqlite3.Connection objects.
schema : string, optional
Specify the schema (if database flavor supports this). If None, use default schema.
if_exists : {‘fail’, ‘replace’, ‘append’}, default ‘fail’
How to behave if the table already exists.
fail: Raise a ValueError.
replace: Drop the table before inserting new values.
append: Insert new values to the existing table.
index : boolean, default True
Write DataFrame index as a column. Uses index_label as the column name in the table.
index_label : string or sequence, default None
Column label for index column(s). If None is given (default) and index is True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex.
chunksize : int, optional
Rows will be written in batches of this size at a time. By default, all rows will be written at once.
dtype : dict, optional
Specifying the datatype for columns. The keys should be the column names and the values should be the SQLAlchemy types or strings for the sqlite3 legacy mode.
Raises: 
ValueError
When the table already exists and if_exists is ‘fail’ (the default).

1.name


该name为SQL表的名字,这是必须输入的参数,指定写入的表。


2.con


con为python连接sql的sqlalchemy.engine,该参数也为必须输入的参数,可以使用SQLAlchemy数据库支持的连接引擎。该引擎可以引入:


from sqlalchemy import create_engine
import pymysql

从而创建连接引擎:

#创建引擎
engine=create_engine('mysql+pymysql://用户名:密码@主机名/数据库?charset=utf8')

3.schema


指定架构(如果database flavor支持此功能)。如果没有,则使用默认架构。pandas中get_schema()方法是可以编写sql的写入框架的,没用传入的话就是普通的Dataframe读入形式。


4.if_exists


该参数为当存在表格时我们应该选择数据以怎样的方式写入到这张表格之中,共有三种方式选择:

  • fail:当存在表格时候自动弹出错误ValueError
  • replace:将原表里面的数据给替换掉
  • append:将数据插入到原表的后面


我们首先引入库来实践操作一下:


c76d713f5efa45ff9ecbd97fcdb51b7c.png

这是表格,里面已经有了数据,下面我们进行插入实验


from sqlalchemy import create_engine
import pymysql
import pandas as pd
import datetime
# 打开数据库连接
conn = pymysql.connect(host='localhost',
                       port=3306,
                       user='root',
                       passwd='xxxx',
                       charset = 'utf8'
                       )
# 使用 cursor() 方法创建一个游标对象 cursor                      
cursor = conn.cursor()
#创建引擎
engine=create_engine('mysql+pymysql://root:xxxx@localhost/mysql?charset=utf8')
date_now=datetime.datetime.now()
data={'id':[888,889],
                       'code':[1003,1004],
                        'value':[2000,2001],
                        'time':[20220609,20220610],
                        'create_time':[date_now,date_now],
                        'update_time':[date_now,date_now]}
insert_df=pd.DataFrame(data)
insert_df.to_sql('metric_valuetest',engine,if_exists='fail')

if_exists默认为fail则当存在表时,升起错误


4a089f4499d94febb1d0b35b85865c1a.png

若表格为没有命名的表格,则会自动创建表格:

from sqlalchemy import create_engine
import pymysql
import pandas as pd
import datetime
# 打开数据库连接
conn = pymysql.connect(host='localhost',
                       port=3306,
                       user='root',
                       passwd='xxxx',
                       charset = 'utf8'
                       )
# 使用 cursor() 方法创建一个游标对象 cursor                      
cursor = conn.cursor()
#创建引擎
engine=create_engine('mysql+pymysql://root:xxxx@localhost/mysql?charset=utf8')
date_now=datetime.datetime.now()
data={'id':[888,889],
                       'code':[1003,1004],
                        'value':[2000,2001],
                        'time':[20220609,20220610],
                        'create_time':[date_now,date_now],
                        'update_time':[date_now,date_now]}
insert_df=pd.DataFrame(data)
insert_df.to_sql('create_one',engine,if_exists='fail')

f13b9d2a8fdf4e35919299e3768141ef.png

但是不推荐这样做,这样做将并不会指定创建表每个字段的详细信息和类型,看DDL就可以看出:


fcc88892427b4ab2aea16b1b498ea060.png

很容易出现问题,我们应该先创建个符合每个字段含义和类型的表格再写入其中。

append直接添加在原来数据后面:

date_now=datetime.datetime.now()
data={'id':[888,889],
                       'code':[1003,1004],
                        'value':[2000,2001],
                        'time':[20220609,20220610],
                        'create_time':[date_now,date_now],
                        'update_time':[date_now,date_now],
                         'source':['python','python']}
insert_df=pd.DataFrame(data)
'''schema_sql={ 'id': sqlalchemy.types.BigInteger(length=20),
             'code': sqlalchemy.types.BigInteger(length=20),
             'value': sqlalchemy.types.BigInteger(length=20),
             'time':  sqlalchemy.types.String(length=50),
             'create_time':  sqlalchemy.types.Datetime(length=50),
             'update_time':  sqlalchemy.types.Datetime(length=50),
                 }'''
insert_df.to_sql('metric_valuetest',engine,if_exists='append',index=False)

24b347ae3c8b481ca36080abb31564e4.png

这里我们首先要吧index索引给关闭,不然会出现:

b49f6bc1fdec427993db60987b51de37.png

index也算进写入mysql数据库中,导致原表中不存在index字段不能插入的问题。


insert_df.to_sql('metric_valuetest',engine,if_exists='replace',index=False)


replace将直接把原表数据给直接替换掉,要小心使用 。


d245e7a143554199b414c565cf721451.png

5.index


默认为True等于存在第一行,列名为index的列,也可以先设定好行索引为哪一列防止插入的时报错


ececd70b59b74572b686a24e822b3499.png

6.index_label


索引列的列标签。如果未给定任何值(默认值)且index为True,则使用索引名称。如果数据帧使用多索引,则应给出序列。也就是如果设定的index为True,可以给index设定列名。

insert_df.to_sql('reate_one',engine,if_exists='replace',index=True,index_label='god')

6a526fdb145c4fdb9b57b5c5e346fd99.png


7.chunksize


一次将按此大小成批写入行。默认情况下,将一次写入所有行。可以设定一次写入的数量,避免一次写入数据量过大导致数据库崩溃。


8.dtype


指定列的数据类型。键是列名,值是sqlite3模式的SQLAlchemy类型或字符串。可以去 sqlalchemy 的官方文档查看所有的sql数据类型:


‘TypeEngine’, ‘TypeDecorator’, ‘UserDefinedType’, ‘INT’, ‘CHAR’, ‘VARCHAR’, ‘NCHAR’, ‘NVARCHAR’, ‘TEXT’, ‘Text’, ‘FLOAT’, ‘NUMERIC’, ‘REAL’, ‘DECIMAL’, ‘TIMESTAMP’, ‘DATETIME’, ‘CLOB’, ‘BLOB’, ‘BINARY’, ‘VARBINARY’, ‘BOOLEAN’, ‘BIGINT’, ‘SMALLINT’, ‘INTEGER’, ‘DATE’, ‘TIME’, ‘String’, ‘Integer’, ‘SmallInteger’, ‘BigInteger’, ‘Numeric’, ‘Float’, ‘DateTime’, ‘Date’, ‘Time’, ‘LargeBinary’, ‘Binary’, ‘Boolean’, ‘Unicode’, ‘Concatenable’, ‘UnicodeText’, ‘PickleType’, ‘Interval’, ‘Enum’, ‘Indexable’, ‘ARRAY’, ‘JSON’]  

from sqlalchemy import create_engine
import sqlalchemy
import pymysql
import pandas as pd
import datetime
from sqlalchemy.types import INT,FLOAT,DATETIME,BIGINT
date_now=datetime.datetime.now()
data={'id':[888,889],
                       'code':[1003,1004],
                        'value':[2000,2001],
                        'time':[20220609,20220610],
                        'create_time':[date_now,date_now],
                        'update_time':[date_now,date_now],
                         'source':['python','python']}
insert_df=pd.DataFrame(data)
schema_sql={ 'id':INT,
             'code': INT,
             'value': FLOAT(20),
             'time': BIGINT,
             'create_time':  DATETIME(50),
             'update_time':  DATETIME(50)
                 }
insert_df.to_sql('create_two',engine,if_exists='replace',index=False,dtype=schema_sql)

cb797fb8f2644decbfa2308a85667acc.png8c3c88f9561642eaad3a8285cef574f5.png

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
14天前
|
SQL 关系型数据库 MySQL
MySQL进阶突击系列(07) 她气鼓鼓递来一条SQL | 怎么看执行计划、SQL怎么优化?
在日常研发工作当中,系统性能优化,从大的方面来看主要涉及基础平台优化、业务系统性能优化、数据库优化。面对数据库优化,除了DBA在集群性能、服务器调优需要投入精力,我们研发需要负责业务SQL执行优化。当业务数据量达到一定规模后,SQL执行效率可能就会出现瓶颈,影响系统业务响应。掌握如何判断SQL执行慢、以及如何分析SQL执行计划、优化SQL的技能,在工作中解决SQL性能问题显得非常关键。
|
15天前
|
SQL 存储 关系型数据库
MySQL原理简介—1.SQL的执行流程
本文介绍了MySQL驱动、数据库连接池及SQL执行流程的关键组件和作用。主要内容包括:MySQL驱动用于建立Java系统与数据库的网络连接;数据库连接池提高多线程并发访问效率;MySQL中的连接池维护多个数据库连接并进行权限验证;网络连接由线程处理,监听请求并读取数据;SQL接口负责执行SQL语句;查询解析器将SQL语句解析为可执行逻辑;查询优化器选择最优查询路径;存储引擎接口负责实际的数据操作;执行器根据优化后的执行计划调用存储引擎接口完成SQL语句的执行。整个流程确保了高效、安全地处理SQL请求。
139 75
|
27天前
|
关系型数据库 MySQL 数据库连接
数据库连接工具连接mysql提示:“Host ‘172.23.0.1‘ is not allowed to connect to this MySQL server“
docker-compose部署mysql8服务后,连接时提示不允许连接问题解决
|
13天前
|
关系型数据库 MySQL 数据库
Docker Compose V2 安装常用数据库MySQL+Mongo
以上内容涵盖了使用 Docker Compose 安装和管理 MySQL 和 MongoDB 的详细步骤,希望对您有所帮助。
95 42
|
4天前
|
关系型数据库 MySQL 网络安全
如何排查和解决PHP连接数据库MYSQL失败写锁的问题
通过本文的介绍,您可以系统地了解如何排查和解决PHP连接MySQL数据库失败及写锁问题。通过检查配置、确保服务启动、调整防火墙设置和用户权限,以及识别和解决长时间运行的事务和死锁问题,可以有效地保障应用的稳定运行。
51 25
|
13天前
|
SQL 存储 关系型数据库
【SQL技术】不同数据库引擎 SQL 优化方案剖析
不同数据库系统(MySQL、PostgreSQL、Doris、Hive)的SQL优化策略。存储引擎特点、SQL执行流程及常见操作(如条件查询、排序、聚合函数)的优化方法。针对各数据库,索引使用、分区裁剪、谓词下推等技术,并提供了具体的SQL示例。通用的SQL调优技巧,如避免使用`COUNT(DISTINCT)`、减少小文件问题、慎重使用`SELECT *`等。通过合理选择和应用这些优化策略,可以显著提升数据库查询性能和系统稳定性。
71 9
|
9天前
|
SQL 存储 关系型数据库
MySQL原理简介—10.SQL语句和执行计划
本文介绍了MySQL执行计划的相关概念及其优化方法。首先解释了什么是执行计划,它是SQL语句在查询时如何检索、筛选和排序数据的过程。接着详细描述了执行计划中常见的访问类型,如const、ref、range、index和all等,并分析了它们的性能特点。文中还探讨了多表关联查询的原理及优化策略,包括驱动表和被驱动表的选择。此外,文章讨论了全表扫描和索引的成本计算方法,以及MySQL如何通过成本估算选择最优执行计划。最后,介绍了explain命令的各个参数含义,帮助理解查询优化器的工作机制。通过这些内容,读者可以更好地理解和优化SQL查询性能。
|
1月前
|
SQL Java 数据库连接
【潜意识Java】MyBatis中的动态SQL灵活、高效的数据库查询以及深度总结
本文详细介绍了MyBatis中的动态SQL功能,涵盖其背景、应用场景及实现方式。
103 6
|
2月前
|
SQL 存储 关系型数据库
【MySQL基础篇】全面学习总结SQL语法、DataGrip安装教程
本文详细介绍了MySQL中的SQL语法,包括数据定义(DDL)、数据操作(DML)、数据查询(DQL)和数据控制(DCL)四个主要部分。内容涵盖了创建、修改和删除数据库、表以及表字段的操作,以及通过图形化工具DataGrip进行数据库管理和查询。此外,还讲解了数据的增、删、改、查操作,以及查询语句的条件、聚合函数、分组、排序和分页等知识点。
【MySQL基础篇】全面学习总结SQL语法、DataGrip安装教程
|
1月前
|
缓存 关系型数据库 MySQL
【深入了解MySQL】优化查询性能与数据库设计的深度总结
本文详细介绍了MySQL查询优化和数据库设计技巧,涵盖基础优化、高级技巧及性能监控。
276 0