【kafka原理】kafka Log存储解析以及索引机制

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
简介: 本文设置到的配置项有名称描述类型默认num.partitionstopic的默认分区数int1log.dirs保存日志数据的目录。如果未设置,则使用log.dir中的值string/tmp/kafka-logsoffsets.topic.replication.factoroffset topic复制因子(ps:就是备份数,设置的越高来确保可用性)。为了确保offset topic有效的复制因子,第一次请求offset topic时,活的broker的数量必须最少最少是配置的复制因子数。 如果不是,offset topic将创建失败或获取最小的复制因子(活着的bro

作者石臻臻, CSDN博客之星Top5Kafka Contributornacos Contributor华为云 MVP ,腾讯云TVP, 滴滴Kafka技术专家KnowStreaming


KnowStreaming  是滴滴开源的Kafka运维管控平台, 有兴趣一起参与参与开发的同学,但是怕自己能力不够的同学,可以联系我,当你导师带你参与开源!

本文设置到的配置项有

名称 描述 类型 默认
num.partitions topic的默认分区数 int 1
log.dirs 保存日志数据的目录。如果未设置,则使用log.dir中的值 string /tmp/kafka-logs
offsets.topic.replication.factor offset topic复制因子(ps:就是备份数,设置的越高来确保可用性)。为了确保offset topic有效的复制因子,第一次请求offset topic时,活的broker的数量必须最少最少是配置的复制因子数。 如果不是,offset topic将创建失败或获取最小的复制因子(活着的broker,复制因子的配置) short 3
log.index.interval.bytes 添加一个条目到offset的间隔 int 4096

首先启动kafka集群,集群中有三台Broker; 设置3个分区,3个副本;

1发送topic消息

启动之后kafka-client发送一个topic为消息szz-test-topic的消息

   

public static void main(String[] args) {
        Properties props = new Properties();
        props.put("bootstrap.servers", "xxx1:9092,xxx2:9092,xxx3:9092");
        props.put("acks", "all");
        props.put("retries", 0);
        props.put("batch.size", 16384);
        props.put("linger.ms", 1);
        props.put("buffer.memory", 33554432);
        props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        Producer<String, String> producer = new KafkaProducer<>(props);
        for(int i = 0; i < 5; i++){
            producer.send(new ProducerRecord<String, String>("szz-test-topic", Integer.toString(i), Integer.toString(i)));
        }
        producer.close();
    }

发送了之后可以去log.dirs路径下看看

这里的3个文件夹分别代表的是3个分区; 那是因为我们配置了这个topic的分区数num.partitions=3; 和备份数offsets.topic.replication.factor=3; 这3个文件夹中的3个分区有LeaderFllower; 那么我们怎么知道谁是谁的Leader呢?

2查看topic的分区和副本

bin/kafka-topics.sh  --describe --topic szz-test-topic --zookeeper localhost:2181

可以看到查询出来显示 分区Partition-0在broker.id=0中,其余的是副本Replicas 2,1 分区Partition-1在broker.id=1中,其余的是副本Replicas 0,2 ...

或者也可以通过zk来 查看leader在哪个broker上

get /brokers/topics/src-test-topic/partitions/0/state

[zk: localhost:2181(CONNECTED) 0] get /brokers/topics/szz-test-topic/partitions/0/state
{"controller_epoch":5,"leader":0,"version":1,"leader_epoch":0,"isr":[0,1,2]}
cZxid = 0x1001995bf

3分区文件都有啥

进入文件夹看到如下文件:

在这里插入图片描述

名称 描述 类型 默认
log.segment.bytes 单个日志文件的最大大小 int 1073741824

我们试试多发送一些消息,看它会不会生成新的 segment

public static void main(String[] args) {
        Properties props = new Properties();
        props.put("bootstrap.servers", "xxx1:9092,xxx2:9092,xxx3:9092");
        props.put("acks", "all");
        props.put("retries", 0);
        props.put("batch.size", 163840);
        props.put("linger.ms", 10);
        props.put("buffer.memory", 33554432);
        props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        Producer<String, String> producer = new KafkaProducer<>(props);
        for(int i = 0; i < 1200; i++){
            //将一个消息设置大一点
            byte[] log = new byte[904800];
            String slog = new String(log);
            producer.send(new ProducerRecord<String, String>("szz-test-topic",0, Integer.toString(i),  slog));
        }
        producer.close();
    }

在这里插入图片描述

从图中可以看到第一个segment文件00000000000000000000.log快要满log.segment.bytes 的时候就开始创建了00000000000000005084.log了; 并且.log.index.timeindex文件是一起出现的; 并且名称是以文件第一个offset命名的

  • .log存储消息文件
  • .index存储消息的索引
  • .timeIndex,时间索引文件,通过时间戳做索引

消息文件

上面的几个文件我们来使用kafka自带工具bin/kafka-run-class.sh 来读取一下都是些啥bin/kafka-run-class.sh kafka.tools.DumpLogSegments --files 00000000000000000000.log

最后一行:

baseoffset:5083  position: 1072592768  CreateTime: 1603703296169

.index 消息索引

bin/kafka-run-class.sh kafka.tools.DumpLogSegments --files 00000000000000000000.index最后一行:

offset:5083  position:1072592768

.timeindex 时间索引文件

bin/kafka-run-class.sh kafka.tools.DumpLogSegments --files 00000000000000000000.timeindex

最后一行:

timestamp: 1603703296169 offset: 5083

Kafka如何查找指定offset的Message的

找了个博主的图 @lizhitao比如:要查找绝对offset为7的Message:

  1. 首先是用二分查找确定它是在哪个LogSegment中,自然是在第一个Segment中。
  2. 打开这个Segment的index文件,也是用二分查找找到offset小于或者等于指定offset的索引条目中最大的那个offset。自然offset为6的那个索引是我们要找的,通过索引文件我们知道offset为6的Message在数据文件中的位置为9807。
  3. 打开数据文件,从位置为9807的那个地方开始顺序扫描直到找到offset为7的那条Message。

Kafka 中的索引文件,以稀疏索引(sparse index)的方式构造消息的索引,它并不保证每个消息在索引文件中都有对应的索引项。每当写入一定量(由 broker 端参数 log.index.interval.bytes 指定,默认值为 4096,即 4KB)的消息时,偏移量索引文件 和 时间戳索引文件 分别增加一个偏移量索引项和时间戳索引项,增大或减小 log.index.interval.bytes 的值,对应地可以缩小或增加索引项的密度。

稀疏索引通过 MappedByteBuffer 将索引文件映射到内存中,以加快索引的查询速度。

leader-epoch-checkpoint

leader-epoch-checkpoint 中保存了每一任leader开始写入消息时的offset; 会定时更新 follower被选为leader时会根据这个确定哪些消息可用

4参考文档

kafka官方文档

Kafka的Log存储解析

Kafka-工作流程,文件存储机制,索引机制,如何通过offset找到对应的消息

Broker配置文件详解


日常运维问题排查=> 滴滴开源LogiKM一站式Kafka监控与管控平台


相关文章
|
16天前
|
存储 缓存 算法
HashMap深度解析:从原理到实战
HashMap,作为Java集合框架中的一个核心组件,以其高效的键值对存储和检索机制,在软件开发中扮演着举足轻重的角色。作为一名资深的AI工程师,深入理解HashMap的原理、历史、业务场景以及实战应用,对于提升数据处理和算法实现的效率至关重要。本文将通过手绘结构图、流程图,结合Java代码示例,全方位解析HashMap,帮助读者从理论到实践全面掌握这一关键技术。
59 13
|
16天前
|
SQL 关系型数据库 MySQL
深入解析MySQL的EXPLAIN:指标详解与索引优化
MySQL 中的 `EXPLAIN` 语句用于分析和优化 SQL 查询,帮助你了解查询优化器的执行计划。本文详细介绍了 `EXPLAIN` 输出的各项指标,如 `id`、`select_type`、`table`、`type`、`key` 等,并提供了如何利用这些指标优化索引结构和 SQL 语句的具体方法。通过实战案例,展示了如何通过创建合适索引和调整查询语句来提升查询性能。
117 9
|
2月前
|
运维 持续交付 云计算
深入解析云计算中的微服务架构:原理、优势与实践
深入解析云计算中的微服务架构:原理、优势与实践
70 1
|
2天前
|
存储 物联网 大数据
探索阿里云 Flink 物化表:原理、优势与应用场景全解析
阿里云Flink的物化表是流批一体化平台中的关键特性,支持低延迟实时更新、灵活查询性能、无缝流批处理和高容错性。它广泛应用于电商、物联网和金融等领域,助力企业高效处理实时数据,提升业务决策能力。实践案例表明,物化表显著提高了交易欺诈损失率的控制和信贷审批效率,推动企业在数字化转型中取得竞争优势。
29 14
|
11天前
|
网络协议 安全 网络安全
探索网络模型与协议:从OSI到HTTPs的原理解析
OSI七层网络模型和TCP/IP四层模型是理解和设计计算机网络的框架。OSI模型包括物理层、数据链路层、网络层、传输层、会话层、表示层和应用层,而TCP/IP模型则简化为链路层、网络层、传输层和 HTTPS协议基于HTTP并通过TLS/SSL加密数据,确保安全传输。其连接过程涉及TCP三次握手、SSL证书验证、对称密钥交换等步骤,以保障通信的安全性和完整性。数字信封技术使用非对称加密和数字证书确保数据的机密性和身份认证。 浏览器通过Https访问网站的过程包括输入网址、DNS解析、建立TCP连接、发送HTTPS请求、接收响应、验证证书和解析网页内容等步骤,确保用户与服务器之间的安全通信。
58 1
|
2月前
|
存储 安全 数据安全/隐私保护
PyPI 存储库中的 JarkaStealer:深入解析与防范措施
PyPI 存储库中的 JarkaStealer:深入解析与防范措施
26 2
|
2月前
|
运维 持续交付 虚拟化
深入解析Docker容器化技术的核心原理
深入解析Docker容器化技术的核心原理
52 1
|
2月前
|
存储 供应链 算法
深入解析区块链技术的核心原理与应用前景
深入解析区块链技术的核心原理与应用前景
60 0
|
2月前
|
JavaScript 前端开发 API
Vue.js响应式原理深度解析:从Vue 2到Vue 3的演进
Vue.js响应式原理深度解析:从Vue 2到Vue 3的演进
65 0
|
2月前
|
API 持续交付 网络架构
深入解析微服务架构:原理、优势与实践
深入解析微服务架构:原理、优势与实践
40 0

推荐镜像

更多