数据分析三剑客【AIoT阶段一(下)】(十万字博文 保姆级讲解)—Pandas—pandas进阶(十八)

简介: 你好,感谢你能点进来本篇博客,请不要着急退出,相信我,如果你有一定的 Python 基础,想要学习 Python数据分析的三大库:numpy,pandas,matplotlib;这篇文章不会让你失望,本篇博客是 【AIoT阶段一(下)】 的内容:Python数据分析,

3.6 数据可视化

🚩修本章节之前需要安装 matplotlib,建议先修:matplotlib的安装教程以及简单调用

3.6.1 线形图

df1 = pd.DataFrame(data = np.random.randn(1000, 4),
                  index = pd.date_range(start = '23/1/2022', periods = 1000),
                  columns=list('ABCD'))
df1.cumsum().plot()

image.png

3.6.2 条形图

df2 = pd.DataFrame(data = np.random.rand(10, 4),
                   columns = list('ABCD'))
display(df2.plot.bar(stacked = True)) # stacked 堆叠
display(df2.plot.bar(stacked = False))# stacked 不堆叠

7.png

3.6.3 饼图

# 饼图用来表示百分比,百分比是自动计算的,颜色可以更换
df3 = pd.DataFrame(data = np.random.rand(4, 2),
                   index = list('ABCD'),
                   columns = ['One', 'Two'])
# subplots 表示两个图,多个图
# figsize 表示尺寸
df3.plot.pie(subplots = True,figsize = (8, 8))

image.png

更换颜色:

# 更换颜色
df3 = pd.DataFrame(data = np.random.rand(4, 2),
                   index = list('ABCD'),
                   columns = ['One', 'Two'])
df3.plot.pie(subplots = True,figsize = (8, 8),
             colors = np.random.random(size = (4, 3)))

image.png

3.6.4 散点图

# 横纵坐标,表示两个属性之间的关系
df4 = pd.DataFrame(np.random.randint(0, 50, size = (50, 4)), columns = list('ABCD'))
display(df4.plot.scatter(x = 'A', y = 'B')) # A和B关系绘制
df4['F'] = df4['C'].map(lambda x : x + np.random.randint(-5, 5, size = 1)[0])
display(df4.plot.scatter(x = 'C', y = 'F'))

8.png

3.6.5 面积图

df5 = pd.DataFrame(data = np.random.rand(10, 4), 
                   columns = list('ABCD'))
display(df5.plot.area(stacked = True))  # stacked 堆叠
display(df5.plot.area(stacked = False)) # stacked 不堆叠

9.png

同样,我们可以调节它的颜色:

df5 = pd.DataFrame(data = np.random.rand(10, 4), 
                   columns = list('ABCD'))
display(df5.plot.area(stacked = True,
                      color = np.random.rand(4, 3)))
# 解释一下 random.rand(4, 3)
# 3就代表三个颜色:红绿蓝(三基色)
# 4就代表 ABCD

10.png




目录
相关文章
|
2月前
|
数据采集 数据可视化 数据挖掘
Pandas数据应用:天气数据分析
本文介绍如何使用 Pandas 进行天气数据分析。Pandas 是一个强大的 Python 数据处理库,适合处理表格型数据。文章涵盖加载天气数据、处理缺失值、转换数据类型、时间序列分析(如滚动平均和重采样)等内容,并解决常见报错如 SettingWithCopyWarning、KeyError 和 TypeError。通过这些方法,帮助用户更好地进行气候趋势预测和决策。
138 71
|
2月前
|
存储 数据采集 数据可视化
Pandas数据应用:电子商务数据分析
本文介绍如何使用 Pandas 进行电子商务数据分析,涵盖数据加载、清洗、预处理、分析与可视化。通过 `read_csv` 等函数加载数据,利用 `info()` 和 `describe()` 探索数据结构和统计信息。针对常见问题如缺失值、重复记录、异常值等,提供解决方案,如 `dropna()`、`drop_duplicates()` 和正则表达式处理。结合 Matplotlib 等库实现数据可视化,探讨内存不足和性能瓶颈的应对方法,并总结常见报错及解决策略,帮助提升电商企业的数据分析能力。
154 73
|
3月前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
116 0
|
1月前
|
存储 数据采集 数据可视化
Pandas数据应用:医疗数据分析
Pandas是Python中强大的数据操作和分析库,广泛应用于医疗数据分析。本文介绍了使用Pandas进行医疗数据分析的常见问题及解决方案,涵盖数据导入、预处理、清洗、转换、可视化等方面。通过解决文件路径错误、编码不匹配、缺失值处理、异常值识别、分类变量编码等问题,结合Matplotlib等工具实现数据可视化,并提供了解决常见报错的方法。掌握这些技巧可以提高医疗数据分析的效率和准确性。
82 22
|
2月前
|
数据采集 数据可视化 索引
Pandas数据应用:股票数据分析
本文介绍了如何使用Pandas库进行股票数据分析。首先,通过pip安装并导入Pandas库。接着,从本地CSV文件读取股票数据,并解决常见的解析错误。然后,利用head()、info()等函数查看数据基本信息,进行数据清洗,处理缺失值和重复数据。再者,结合Matplotlib和Seaborn进行数据可视化,绘制收盘价折线图。最后,进行时间序列分析,设置日期索引、重采样和计算移动平均线。通过这些步骤,帮助读者掌握Pandas在股票数据分析中的应用。
95 5
|
3月前
|
机器学习/深度学习 数据采集 数据挖掘
解锁 Python 数据分析新境界:Pandas 与 NumPy 高级技巧深度剖析
Pandas 和 NumPy 是 Python 中不可或缺的数据处理和分析工具。本文通过实际案例深入剖析了 Pandas 的数据清洗、NumPy 的数组运算、结合两者进行数据分析和特征工程,以及 Pandas 的时间序列处理功能。这些高级技巧能够帮助我们更高效、准确地处理和分析数据,为决策提供支持。
73 2
|
3月前
|
存储 数据挖掘 数据处理
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第26天】Python 是数据分析领域的热门语言,Pandas 库以其高效的数据处理功能成为数据科学家的利器。本文介绍 Pandas 在数据读取、筛选、分组、转换和合并等方面的高效技巧,并通过示例代码展示其实际应用。
84 2
|
3月前
|
数据采集 数据可视化 数据挖掘
Python数据分析:Pandas库实战指南
Python数据分析:Pandas库实战指南
|
3月前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集
|
3月前
|
数据采集 数据可视化 数据挖掘
利用Python进行数据分析:Pandas库实战指南
利用Python进行数据分析:Pandas库实战指南