2_python进阶—闭包、迭代器、生成器、装饰器

简介: python进阶—闭包、迭代器、生成器、装饰器

一、闭包

  • 什么是闭包?
  • 内部函数访问外部函数的局部变量
def func():
    name = "alex"   # 常驻内存  防止其他程序改变这个变量
    def inner():
        print(name)  # 在内层函数中调用了外层函数的变量,叫闭包, 可以让一个局部变量常驻内存
    return inner


ret = func()
ret()   # 执行的是inner()
ret() 
alex

alex

1.1 闭包的好处

  • 如果一个函数执行完毕,则这个函数中的变量以及局部命名空间中的内容都将会被销毁。
  • python规定,如果你在内部函数中访问了外层函数中的变量。那么这个变量将不会消亡,将会常驻在内存中。
  • 也就是说:使用闭包,可以保证外层函数中的变量在内存中常驻。
  • 综上,闭包的作用就是让一个变量能够常驻内存,供后面的程序使用。
from urllib.request import urlopen
def but():
    content = urlopen("http://www.h3c.com/cn/").read()
    def inner():
         return content    # 在函数内部使用了外部的变量 . 闭包
    return inner

print("加载中........")
fn = but()  # 这个时候就开始加载 h3c 的内容
# 后⾯需要⽤到这⾥⾯的内容就不需要在执⾏⾮常耗时的⽹络连接操作了
content = fn()   # 获取内容
print(content)
content2 = fn()  # 重新获取内容
print(content2)

1.2 检测闭包

  • 使用 函数名.__closure__来检测函数是否是闭包。
  • 返回cell是闭包
  • 返回None不是闭包
def func1():
    name = "alex"
    def func2():
        print(name)  # 闭包
    func2()
    print(func2.__closure__)
func1()
alex
(,)

1.3 问题,如何在函数外边调用内部函数呢?

def outer():
    name = "alex"
    # 内部函数
    def inner():
        print(name)  # 闭包
    return inner

fn = outer()  # 访问外部函数,获取到内部函数的函数地址
fn()  # 访问内部函数

# alex

那如果多层嵌套呢?很简单,只需要一层一层的往外层返回就行了

def func1():
    def func2():
        def func3():
            print("hello")
        return func3
    return func2

func1()()()

# hello

二、迭代器

迭代器把可迭代对象中的内容一个一个从头到尾点一遍。

2.1 可迭代对象

# 可迭代对象: str, list, tuple, set, f文件, dict

# 上面可迭代对象中,只有 文件句柄f,range 是可迭代器。

# 所有的以上数据类型中都有一个函数__iter__(), 所有包含了__iter__()的数据类型都是可迭代的数据类型 Iterable

2.2 dir()来查看一个对象

# dir()来查看一个对象,数据类型中包含了哪些东西

lst = [1,2,3]   # list
print(dir(lst))
print("__iter__" in dir(lst))


s = "王尼玛"
print("__iter__" in dir(s))      # 判断__iter__是否在dir()中,在True

2.3 迭代器讲解

# list是一个Iterable.可迭代的
lst = ["皇阿玛", "皇额娘", "容嬷嬷", "紫薇"]
it = lst.__iter__()   # 获取迭代器

# 迭代器往外拿元素. __next__()
print(it.__next__())    # 皇阿玛
print(it.__next__())    # 皇额娘
print(it.__next__())    # 容嬷嬷
print(it.__next__())    # 紫薇
print(it.__next__())    # 迭代到最后一个元素之后. 再进行迭代就报错了

2.3.1 模拟for循环(重点)

lst = ["皇阿玛", "皇额娘", "容嬷嬷", "紫薇"]

# 模拟for循环
it = lst.__iter__()     # 获取迭代器 
while True:
    try:
        name = it.__next__()
        print(name)
    except StopIteration: # 拿完了
        break
        
# 皇阿玛
# 皇额娘
# 容嬷嬷
# 紫薇

2.4 迭代器与可迭代对象区别

  • 迭代器一定是可迭代对象
  • 可迭代对象不一定是迭代器

2.4.1 方法一

lst = [1, 2, 3]
it = lst.__iter__()
print("__iter__" in dir(lst))   # 确定是一个可迭代的   True
print("__next__" in dir(lst))   # 确定不是一个迭代器   False

2.4.2 方法二

lst = [1, 2, 3]
from collections import Iterable    # 可迭代的
from collections import Iterator    # 迭代器

# isinstence(对象, 类型) 判断xx对象是否是xxx类型的
print(isinstance(lst, Iterable))   #  True
print(isinstance(lst, Iterator))   #  False

it = lst.__iter__()
print(isinstance(it, Iterable))  # 判断是否是可迭代的 迭代器一定是可迭代的        True 
print(isinstance(it, Iterator))  # 迭代器里面一定有__next__(), __iter__()     True 

2.4.3 判断文件句柄f是迭代器又是可迭代对象

f = open("01 今日内容大纲", mode="r", encoding="utf-8")
print(isinstance(f, Iterable))   # True 
print(isinstance(f, Iterator))   # True

2.5 迭代器特点

  • Iterable:可迭代对象. 内部包含__iter__( ) 函数
  • Iterator:迭代器.内部包含__iter__( ) 同时包含__next__().
  • 迭代器的特点:

    • 1.节省内存.
    • 2.惰性机制
    • 3.不能反复,只能向下执行.

三、生成器

  • 生成器的本质就是迭代器
  • 生成器要值的时候才取值

3.1 生成器的三种创建办法(Python)

​ 1.通过生成器函数
​ 2.通过生成器表达式创建生成器
​ 3.通过数据转换

1、生成器函数:
            函数中包含了yield的就是生成器函数
            注意:生成器函数被执行. 获取到的是生成器. 而不是函数的执行
2、生成器表达式:
    (结果 for 变量 in 可迭代对象 if 条件筛选)
   取值:
     1. __next__()
     2. send(值) 给上一个yield位置传一个值, 第一个和最后一个yield不用传值
     3. 可以for循环
     4. list(g)
 3. 各种推倒式和生成器表达式(没有元组推导式)
     1. 列表推倒式 [结果 for 变量 in 可迭代对象 if 筛选]
     2. 字典推倒式 {结果 for 变量 in 可迭代对象 if 筛选} 结果=>key:value
     3. 集合推倒式 {结果 for 变量 in 可迭代对象 if 筛选} 结果=>key

3.2 return和yield区别

def func():
    print("111")
    return 222

ret = func()    # ret = 222
print(ret)

# 111
# 222

将函数中的return换成yield就是生成器

def func():
    print("111")
    yield 222  # 函数中包含了yield, 当前这个函数就不再是普通的函数了. 是生成器函数

ret = func()
print(ret)

#结果: <generator object func at 0x00000275AF1F4A48>

以下是生成器

def func():
    print("111")
    yield 222

gener = func()     # 这个时候函数不会执行,而是获取/创建生成器
ret = gener.__next__()  # 这个时候函数才会执行,yield的作用和return一样,也是返回  # 222
print(ret)



def func():
    print("我是周杰伦")
    yield "昆凌"  # 函数中包含了yield, 当前这个函数就不再是普通的函数了. 是生成器函数
    print("我是王力宏")
    yield "李云迪???"
    # print("你好啊") # 最后一个yield之后如果再进行__next__() 会报错

g = func()  # 通过函数func()来创建一个生成器
print(g.__next__())    #执行: 周杰伦,昆凌
print(g.__next__())    #执行: 王力宏,李云迪

从中我们可以看到yield和return的效果是一样的。区别是:yield是分段来执行一个函数,return直接停止执行函数。

# return 直接返回结果. 结束函数的调用;一次性全部拿出,很占内存
# yield 返回结果.可以让函数分段执行;一次就一个,用多少生成多少。生成器是一个一个指向下一个。

3.3 send()方法

def func():
    print("大碴粥")
    a = yield "11"
    print(a)
    print("狗不理")
    b = yield "22"
    print("大麻花")
    c = yield "33"

g = func()   # 创建生成器
print(g.__next__())
print(g.send(1))
print(g.__next__())

# 结果:
大碴粥
11
1
狗不理
22
大麻花
33

image.png

3.3.1 send( )和__ next__区别

send()__next__() 都可以让生成器向下执行一次;

send() 可以给上一个yield位置传递值,不能给最后一个yield发送值。 在第一次执行生成器代码的时候不能用send().

3.3.2 把生成器里面的东西转化成列表

def func():
    yield 11
    yield 22
    yield 33
    yield 44
g = func()
lst = list(g)   # g必须是可迭代对象
print(lst)

# [11, 22, 33, 44]

3.4 生成器表达式(重要)( )

  • 生成器表达式和列表推导式的语法基本上是一样的,只是把 [ ] 替换成 ( )
  • 生成器表达式可以直接获取生成器对象。
  • 生成器对象可以直接进行for循环。
  • 生成器具有惰性机制。
#  (结果 for 变量 in 可迭代对象 if 条件筛选)

gen = (i for i in range(10))
print(gen)
# 结果:
# <generator object <genexpr> at 0x106768f10>

生成器表达式也可以进行筛选 :

# 获取1-100内能被3整除的数
gen = (i for i in range(1, 100) if i % 3 == 0)
for num in gen:
    print(num)

#  3 6 9 ...99

3.5 生成器表达式和列表推导式的区别

生成器表达式和列表推导式的区别:

  • 1.列表推导式比较耗内存。一次性加载.生成器表达式几乎不占用内存.使用的时候才分配和使用内存
  • 2.得到的值不一样.列表推导式得到的是一个列表.生成器表达式获取的是一个生成器.

举个栗子.同样一篮子鸡蛋。

  • 列表推导式:直接拿到一篮子鸡蛋.
  • 生成器表达式:拿到一个老母鸡,需要鸡蛋就给你下鸡蛋.

生成器的惰性机制:生成器只有在访问的时候才取值。说白了,你找他要他才给你值。不找他要,他是不会执行的。

# 生成器的惰性机制
def func():
    print(111)
    yield 222

g = func()  # 生成器g
g1 = (i for i in g)   # 生成器g1,但是g1的数据来源于g
g2 = (i for i in g1)  # 生成器g2,来源于g1

print(list(g))     # 获取g中的数据,这时func()才会被执行,打印111获取到222,g完毕
print(list(g1))    # 获取g1中的数据,g1的数据来源是g,但是g已经取完了,g1也就没有数据
print(list(g2))   # 和g1同理


# 111
# [222]
# []
# []

3.6 面试题

def add(a, b):
    return a + b


def gen():
    for r_i in range(4):
         yield r_i   # 0,1,2,3


g = gen()   # 生成生成器

for n in [2, 10]:  # n=2,10 两个值
    g = (add(n, i) for i in g)
    # n = 2 
    # g = (add(n, i) for i in gen())
    # n =10
    # g = (add(n, i) for i in g = (add(10, i) for i in [0,1,2,3]))    
    
print(list(g))   # 这里面所有的n都是10,都是最后一个值

# [20, 21, 22, 23]

四、推导式(没有元组推导式)

4.1 列表推导式 [ ]

# 给出一个列表,通过循环, 里面装1-14的数据
lst = []
for i in range(1,15):
    lst.append("python%s" % i)
print(lst)


# ['python1', 'python2', 'python3', 'python4', 'python5', 'python6', 'python7', 'python8', 'python9', 'python10', 'python11', 'python12', 'python13', 'python14']

替换成列表推导式:

# 列表推倒式; 最终给你的是列表
# 语法 [最终结果(变量) for 变量 in 可迭代对象]

lst = [i for i in range(1,15)]
print(lst)

# [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]

找出100以内的偶数:

# [最终结果 for 变量 in 可迭代对象 if 条件]
lst = [i for i in range(1,101) if i%2==0]
print(lst)

4.2 字典推导式{ }

# 把字典中的key和value互换
dic = {'a': 1, 'b': '2'}
new_dic = {dic[key]: key for key in dic}
print(new_dic)

# {1: 'a', '2': 'b'}


# 在以下list中. 从lst1中获取的数据和lst2中相对应的位置的数据组成⼀个新字典
lst1 = ['jay', 'jj', 'sylar']
lst2 = ['周杰伦', '林林俊杰', '邱彦涛']
dic = {lst1[i]: lst2[i] for i in range(len(lst1))}
print(dic)

# {'jay': '周杰伦', 'jj': '林林俊杰', 'sylar': '邱彦涛'}

4.3 集合推导式{ }

集合推导式:

  • 集合推导式可以帮我们直接生成一个集合。
  • 集合的特点:无序,不重复。所以集合推导式自带去重功能。
lst = [1, -1, 8, -8, 12]
# 绝对值去重
s = {abs(i) for i in lst}
print(s)

# {8, 1, 12}

五、装饰器 property

# property 装饰器函数,内置函数,帮助你将类中的方法伪装成属性,特性(特殊的属性)
    # 调用方法的时候不需要主动加括号
    # 让程序的逻辑性更合理
    # @方法名.setter  装饰器,修改被property装饰的属性的时候会调用被这个装饰器装饰的方法,除了self之外还有一个参数,被修改的值
    # @方法名.deleter 装饰器,当要删除被property装饰的属性的时候会调用被这个装饰器装饰的方法

image.png

class Circle:
    def __init__(self, r):
        self.r = r
        # self.area = 3.14*self.r**2

    @property
    def area(self):  # 这个方法计算结果本身就是一个属性,但是这个属性会随着这个类/对象的一些基础变量的变化而变化
        return 3.14 * self.r ** 2


c = Circle(5)
print(c.area)  # 78.5
c.r = 10
print(c.area)  # 314.0





# 偏其他语言 property+私有的 合用 ,这个时候更多的也会用到setter和deleter
class A:
    def __init__(self,name):
        self.__name = name

    @property
    def name(self):
        return self.__name

    @name.setter
    def name(self,new_name):
        if type(new_name) is str:
            self.__name = new_name

    @name.deleter
    def name(self):
        del self.__name
a = A('alex')
a.name = 123
print(a.name)  # alex
# del a.name   # 语法
# print(a.name)
目录
相关文章
|
1月前
|
开发者 Python
探索Python中的装饰器:从基础到高级应用
本文将带你深入了解Python中的装饰器,这一强大而灵活的工具。我们将一起探讨装饰器的基本概念,它们如何工作,以及如何使用它们来增强函数和类的功能,同时不改变其核心逻辑。通过具体代码示例,我们将展示装饰器的创建和使用,并探索一些高级应用,比如装饰器堆栈和装饰带参数的装饰器。无论你是初学者还是有经验的开发者,这篇文章都将为你提供新的视角,帮助你更有效地使用装饰器来简化和优化你的代码。
|
29天前
|
缓存 数据安全/隐私保护 Python
python装饰器底层原理
Python装饰器是一个强大的工具,可以在不修改原始函数代码的情况下,动态地增加功能。理解装饰器的底层原理,包括函数是对象、闭包和高阶函数,可以帮助我们更好地使用和编写装饰器。无论是用于日志记录、权限验证还是缓存,装饰器都可以显著提高代码的可维护性和复用性。
34 5
|
1月前
|
测试技术 开发者 Python
探索Python中的装饰器:从入门到实践
装饰器,在Python中是一块强大的语法糖,它允许我们在不修改原函数代码的情况下增加额外的功能。本文将通过简单易懂的语言和实例,带你一步步了解装饰器的基本概念、使用方法以及如何自定义装饰器。我们还将探讨装饰器在实战中的应用,让你能够在实际编程中灵活运用这一技术。
40 7
|
1月前
|
Python
探索Python中的装饰器:简化代码,增强功能
在Python的世界里,装饰器就像是给函数穿上了一件神奇的外套,让它们拥有了超能力。本文将通过浅显易懂的语言和生动的比喻,带你了解装饰器的基本概念、使用方法以及它们如何让你的代码变得更加简洁高效。让我们一起揭开装饰器的神秘面纱,看看它是如何在不改变函数核心逻辑的情况下,为函数增添新功能的吧!
|
1月前
|
程序员 测试技术 数据安全/隐私保护
深入理解Python装饰器:提升代码重用与可读性
本文旨在为中高级Python开发者提供一份关于装饰器的深度解析。通过探讨装饰器的基本原理、类型以及在实际项目中的应用案例,帮助读者更好地理解并运用这一强大的语言特性。不同于常规摘要,本文将以一个实际的软件开发场景引入,逐步揭示装饰器如何优化代码结构,提高开发效率和代码质量。
52 6
|
1月前
|
存储 缓存 Python
Python中的装饰器深度解析与实践
在Python的世界里,装饰器如同一位神秘的魔法师,它拥有改变函数行为的能力。本文将揭开装饰器的神秘面纱,通过直观的代码示例,引导你理解其工作原理,并掌握如何在实际项目中灵活运用这一强大的工具。从基础到进阶,我们将一起探索装饰器的魅力所在。
|
1月前
|
测试技术 开发者 Python
深入理解Python装饰器:从基础到高级应用
本文旨在为读者提供一个全面的Python装饰器指南,从其基本概念讲起,逐步深入探讨其高级应用。我们将通过实例解析装饰器的工作原理,并展示如何利用它们来增强函数功能、控制程序流程以及实现代码的模块化。无论你是Python初学者还是经验丰富的开发者,本文都将为你提供宝贵的见解和实用的技巧,帮助你更好地掌握这一强大的语言特性。
50 4
|
2月前
|
Python
深入理解Python装饰器:从入门到实践####
本文旨在通过简明扼要的方式,为读者揭开Python装饰器的神秘面纱,从基本概念、工作原理到实际应用场景进行全面解析。不同于常规的摘要仅概述内容概要,本文将直接以一段精炼代码示例开篇,展示装饰器如何优雅地增强函数功能,激发读者探索兴趣,随后深入探讨其背后的机制与高级用法。 ####
59 11
|
3月前
|
测试技术 Python
Python中的装饰器:从入门到精通
【10月更文挑战第7天】本文旨在通过浅显易懂的方式,向读者介绍Python中装饰器的概念、用法和高级应用。我们将从装饰器的定义开始,逐步深入到如何创建和使用装饰器,最后探讨装饰器在实战中的应用。文章将结合代码示例,帮助读者更好地理解和掌握这一强大的工具。
|
3月前
|
缓存 开发者 Python
探索Python中的装饰器:从入门到实践
【9月更文挑战第36天】装饰器,在Python中是一种特殊的语法糖,它允许你在不修改原有函数代码的情况下,增加额外的功能。本文将通过浅显易懂的语言和实际代码示例,带你了解装饰器的基本原理,探索其背后的魔法,并展示如何在实际项目中运用这一强大工具。无论你是初学者还是有一定经验的开发者,这篇文章都将为你打开一扇通往更高效、更优雅代码的大门。
67 11