《人脸识别原理及算法——动态人脸识别系统研究》—1章1.1节历史背景

简介:

本节书摘来自异步社区《人脸识别原理及算法——动态人脸识别系统研究》一书中的1章1.1节历史背景,作者 沈理 , 刘翼光 , 熊志勇,更多章节内容可以访问云栖社区“异步社区”公众号查看。

第1章 人脸识别概论

1.1 历史背景
人脸识别原理及算法——动态人脸识别系统研究
自20世纪70年代以来,随着人工智能技术的兴起以及人类视觉研究的进展,人们逐渐对人脸图像的机器识别投入越来越多的热情,并形成了一个人脸识别研究领域。对这一领域的研究除了具有重大理论价值外,也极具实用价值。

人工智能研究的目标就是让机器具有像人类一样的思考能力以及识别事物、处理事物的能力,并从解剖学、心理学、行为感知学等各个角度来探求人类的思维机制以及感知事物、处理事物的机制,并努力将这些机制用于实践,如各种智能机器人的研制。人脸图像的机器识别研究就是在这种背景下兴起的,因为人们发现许多对于人类而言可以轻易做到的事情让机器来实现却很难,如人脸图像的识别、语音识别、自然语言理解等。如果能够开发出像人类一样的机器识别机制,就能够逐步地了解人类是如何存储信息并进行处理的,从而最终了解人类的思维机制。

人脸识别是模式识别和计算机视觉的交叉领域。人脸识别将计算机视觉和模式识别结合在一起,广泛地应用在机器人学等学科中。作为人类几个重要的外在鉴别特征之一,如同人的指纹一样,人脸也具有唯一性,也可用来鉴别一个人的身份。人脸识别对自动鉴别和人类自动分辨有重要的意义,在生物特征鉴别方面有其独特的优势。人脸识别研究也具有很大的实用价值。

作为人类特征识别的一种,人脸识别和其他人类特征识别相比,具有自然性和不被被测个体察觉的特点,这也是其优点。自然性指该识别方式同人类(甚至其他生物)进行个体识别时所利用的生物特征相同。在样本获取方面,与指纹识别和虹膜识别相比,人脸识别有其独到的优势。指纹和虹膜的获取都要求待识别对象与成像设备的空间距离较近,而人脸识别样本的获取突破了这一限制,在一般可视情况下,人脸图像均能够正常被捕捉用来识别,这决定了人脸识别比指纹、虹膜识别有更广的应用范围,诸如远程安全、检疫、图像传送等。自20世纪90年代起,Internet的蓬勃发展对于网络安全和鉴别的需求也导致了人脸识别具有更广泛的应用领域。但是人脸识别也存在识别困难。指纹识别和虹膜识别的取样样本都具有唯一性,对于任意两个样本,指纹或虹膜样本不会是完全相同的;另外指纹和虹膜的成像不会因为在不同时刻有差别而得到不同结果,这就决定了待识别图像和样本本身一样具有唯一性。而人脸图像受成像角度、光照条件等外界因素的影响比较大,即使相同的人脸图像成像后也可能有较大的差别;另外不同的人脸在一定角度下,有时也有较大相似度,这两个因素导致了人脸识别复杂性比较高、识别难度比较大,带来了人脸识别的困难。

现在已有实用的计算机自动指纹识别系统面世,并在安检等部门得到应用,但还没有通用成熟的人脸自动识别系统出现。人脸图像取样方便,可以不接触目标就进行取样、识别,人脸图像的自动识别系统较之指纹识别系统、DNA鉴定等更具便利性,因此人脸识别研究的实际意义更大。并且与指纹图像不同的是,人脸图像受很多因素的干扰:人脸表情的多样性以及外在的成像过程中的光照、图像尺寸、旋转、姿势变化等。即使同一个人,在不同的环境下拍摄所得到的人脸图像也不相同,甚至有时有很大的差别,这给识别带来很大难度。人脸图像识别的干扰条件很多,因此实现人脸图像的识别也就更具挑战性。

人脸识别研究最早开始于20世纪50年代,当时的研究主要基于人脸的外部轮廓方法。由于人脸轮廓的提取比较困难,在随后的十多年人脸识别的研究相对停滞;直到20世纪80年代后期人脸识别方法有了新的突破,引入了神经生理学、脑神经学、视觉知识等,人脸识别的研究才重新活跃起来。国外对于人脸识别的研究较早,现已有实用系统面世,但这些实用系统通常对于成像条件要求较苛刻,其应用范围较窄。国内也有许多科研机构从事这方面的研究,并已取得许多成果,现在已有产品上市。

本文仅用于学习和交流目的,不代表异步社区观点。非商业转载请注明作译者、出处,并保留本文的原始链接。

相关文章
|
23天前
|
机器学习/深度学习 存储 算法
神经网络分类算法原理详解
神经网络分类算法原理详解
45 0
|
29天前
|
机器学习/深度学习 人工智能 监控
AI算法分析,智慧城管AI智能识别系统源码
AI视频分析技术应用于智慧城管系统,通过监控摄像头实时识别违法行为,如违规摆摊、垃圾、违章停车等,实现非现场执法和预警。算法平台检测街面秩序(出店、游商、机动车、占道)和市容环境(垃圾、晾晒、垃圾桶、路面不洁、漂浮物、乱堆物料),助力及时处理问题,提升城市管理效率。
AI算法分析,智慧城管AI智能识别系统源码
|
1月前
|
算法
经典控制算法——PID算法原理分析及优化
这篇文章介绍了PID控制算法,这是一种广泛应用的控制策略,具有简单、鲁棒性强的特点。PID通过比例、积分和微分三个部分调整控制量,以减少系统误差。文章提到了在大学智能汽车竞赛中的应用,并详细解释了PID的基本原理和数学表达式。接着,讨论了数字PID的实现,包括位置式、增量式和步进式,以及它们各自的优缺点。最后,文章介绍了PID的优化方法,如积分饱和处理和微分项优化,以及串级PID在电机控制中的应用。整个内容旨在帮助读者理解PID控制的原理和实际运用。
75 1
|
1月前
|
机器学习/深度学习 算法 数据可视化
探索线性回归算法:从原理到实践
探索线性回归算法:从原理到实践【2月更文挑战第19天】
21 0
探索线性回归算法:从原理到实践
|
10天前
|
存储 算法 Linux
【实战项目】网络编程:在Linux环境下基于opencv和socket的人脸识别系统--C++实现
【实战项目】网络编程:在Linux环境下基于opencv和socket的人脸识别系统--C++实现
27 6
|
10天前
|
机器学习/深度学习 自然语言处理 算法
|
3天前
|
机器学习/深度学习 算法 数据可视化
样条曲线、决策树、Adaboost、梯度提升(GBM)算法进行回归、分类和动态可视化
样条曲线、决策树、Adaboost、梯度提升(GBM)算法进行回归、分类和动态可视化
|
18天前
|
存储 算法 编译器
【数据结构】栈算法(算法原理+源码)
【数据结构】栈算法(算法原理+源码)
【数据结构】栈算法(算法原理+源码)
|
23天前
|
缓存 算法 关系型数据库
深度思考:雪花算法snowflake分布式id生成原理详解
雪花算法snowflake是一种优秀的分布式ID生成方案,其优点突出:它能生成全局唯一且递增的ID,确保了数据的一致性和准确性;同时,该算法灵活性强,可自定义各部分bit位,满足不同业务场景的需求;此外,雪花算法生成ID的速度快,效率高,能有效应对高并发场景,是分布式系统中不可或缺的组件。
深度思考:雪花算法snowflake分布式id生成原理详解
|
29天前
|
机器学习/深度学习 算法
m基于深度学习的64QAM调制解调系统相位检测和补偿算法matlab仿真
MATLAB 2022a仿真实现了基于深度学习的64QAM相位检测和补偿算法,有效应对通信中相位失真问题。通过DNN进行相位检测和补偿,降低解调错误。核心程序生成随机信号,模拟AWGN信道,比较了有无相位补偿的误码率,结果显示补偿能显著提升性能。
25 8

热门文章

最新文章