使用Roberts算子进行图像分割(Matlab自编程实现)

简介: 使用Roberts算子进行图像分割(Matlab自编程实现)

首先了解一下何为边缘,“边缘”可定义为图像局部区域特征不相同的那些区域间的分界线,而“线”则可以认为是具有很小宽度的其中间区域具有相同的图像特征的边缘对。

常用边缘提取方法有差分算子、拉普拉斯算手、LOG算子等 。常用的一阶差分算子有Roberts交叉梯度算子、Prewitt梯度算子、Sobel梯度算子,下面介绍Roberts算子。

Roberts交叉梯度算子模板为:

我们可以用街区距离计算梯度幅值。

编程代码:

Roberts.m :输入参数为灰度图像

function Roberts(I_in)
    figure(1),subplot(121),imshow(I_in),title('原图');
    [row,col] = size(I_in);
    I=double(I_in);
    I(:, size(I_in, 2) + 1) = 195;
    I(size(I_in, 1) + 1, :) = 195;
    g = zeros(row,col);
    g_x=zeros(row,col);  % 水平方向
    g_y=zeros(row,col);  % 垂直方向
    for i=1:row
        for j=1:col
            x=abs(I(i+1,j+1)-I(i,j));
            y=abs(I(i+1,j)-I(i,j+1));
            sum=x+y;
            g(i,j) = sum;
            g_x(i,j)=x;
            g_y(i,j)=y;
        end
    end
    NumPixel = zeros(1,400);  % 建立一个256列的行向量,以统计各灰度级的像素个数
    for i = 1 : row
        for j = 1 : col
            k = g(i,j);  % k是像素点(i,j)的灰度值
            NumPixel(k+1) = NumPixel(k+1) + 1;  % 对应灰度值像素点数量加1 
        end
    end
    figure(2),bar(NumPixel);  % 灰度图像的直方图
    figure(1),subplot(122),imshow(g,[]),title('卷积结果');
    I2=g;
    for i = 1 : row
        for j = 1 : col
            if I2(i,j) < 80
                I2(i,j) = 1;
            else
                I2(i,j) = 0;
            end
        end
    end
    figure(3),subplot(121),imshow(g_x,[]),title('水平边界检测结果');
    figure(3),subplot(122),imshow(g_y,[]),title('垂直边界检测结果');
    figure,imshow(I2),title('二值化图像');
end

图3.1-1 灰度分布直方图

图3.1-2 水平边界与垂直边界检测结果

图3.1-3 room原图与卷积结果

图3.1-4 结果二值化

可以看到,进行卷积后得到的图像灰度值大多集中在0-25之间,这是因为图像中边缘部分占的信息比较少,而平滑部分信息较多,当在梯度较小的区域做梯度幅值计算时,得到的结果会接近于0。从水平边界检测和垂直边界检测结果来看(见图3.1-2),可以看到Roberts算子对正45度和负45度的边缘检测效果较明显,其中水平方向检测正45度方向,垂直方向检测负45度方向。要注意的是,实验中发现当用uint8类型的矩阵来存储结果时,由于uint8类型存储的是0-255之间的值,而计算结果会大于255,此时会将大于255的值置为255,会造成一些信息丢失,得到的结果也不明显。对于水平和垂直的边缘,两个方向的检测结果都基本一致。

在对卷积结果进行二值化处理时,从灰度分布图中可以得到大概的最小值阈值(即该阈值往后的灰度分布较少),但是将这个值作为阈值得到的图像会有较多非边缘部分信息(如房顶部分),此时就需要增大阈值,以过滤这些非边缘信息。

加入高斯噪声之后(可自己将图片加入噪声后放入函数进行处理,这里没有将加入噪声的处理结果放上来),可以看到灰度值分布呈现很明显的正态分布,得到的卷积结果不理想,无论怎么调整阈值,噪声都会造成很大的影响。假如阈值过小,噪声会覆盖掉边缘信息,噪声过大则会将边缘部分过滤。罗伯特算法对于噪声较多的图片处理效果较差。

相关文章
|
7月前
|
机器学习/深度学习 算法 数据库
基于CNN卷积网络的MNIST手写数字识别matlab仿真,CNN编程实现不使用matlab工具箱
基于CNN卷积网络的MNIST手写数字识别matlab仿真,CNN编程实现不使用matlab工具箱
|
1月前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
5月前
|
数据采集 并行计算 算法
LabVIEW与Matlab联合编程的途径及比较
LabVIEW与Matlab联合编程的途径及比较
114 0
LabVIEW与Matlab联合编程的途径及比较
|
6月前
|
算法 调度
基于PPNSA+扰动算子的车间调度最优化matlab仿真,可以任意调整工件数和机器数,输出甘特图
`MATLAB2022a`仿真实现PPNSA+扰动算子的车间调度优化,支持工件和机器数量调整,输出甘特图与收敛曲线。算法针对JSSP,采用启发式策略应对NP难问题,最小化最大完工时间。[图:算法流程示意图]
|
7月前
|
算法 TensorFlow 算法框架/工具
基于直方图的图像阈值计算和分割算法FPGA实现,包含tb测试文件和MATLAB辅助验证
这是一个关于图像处理的算法实现摘要,主要包括四部分:展示了四张算法运行的效果图;提到了使用的软件版本为VIVADO 2019.2和matlab 2022a;介绍了算法理论,即基于直方图的图像阈值分割,通过灰度直方图分布选取阈值来区分图像区域;并提供了部分Verilog代码,该代码读取图像数据,进行处理,并输出结果到&quot;result.txt&quot;以供MATLAB显示图像分割效果。
|
7月前
|
算法 计算机视觉 索引
基于四叉树的图像分割算法matlab仿真
基于四叉树的图像分割算法matlab仿真
基于四叉树的图像分割算法matlab仿真
|
7月前
|
编解码 并行计算 算法
如何在 MATLAB 中进行图像分割(matlab仿真与图像处理系列第7期)
如何在 MATLAB 中进行图像分割(matlab仿真与图像处理系列第7期)
|
自然语言处理 算法
第4章 MATLAB编程基础——4.5 脚本与函数(2)
第4章 MATLAB编程基础——4.5 脚本与函数(2)
|
自然语言处理
第4章 MATLAB编程基础——4.5 脚本与函数(1)
第4章 MATLAB编程基础——4.5 脚本与函数(1)
第4章 MATLAB编程基础——4.4 控制程序流的其他常用指令
第4章 MATLAB编程基础——4.4 控制程序流的其他常用指令