暂时未有相关云产品技术能力~
better bench 简介:CS博士;研究领域:类脑计算、持续学习、AI、数据挖掘、自然语言处理、数学建模。
主成分分析(PCA)的原理和算法过程。
解决LeetCode "盛最多水的容器" 问题的Python实现代码,使用了双指针的方法来找出能够容纳最多水的两条线。代码中定义了两个指针i和j,分别从数组的两端向中间遍历,通过计算两个指针所指高度的较小值与它们之间的距离的乘积来更新最大面积res。
解决WPS中Mathtype插件选项卡显示为灰色且无法使用的问题的步骤,包括安装宏组件VBA WPS,复制特定的文件到WPS安装目录和启动目录,并在完成这些步骤后重新打开WPS以使选项卡可用。
合并K个升序链表的方法:使用数组排序的暴力求解法、使用小顶堆的高效方法,以及分而治之的策略,并提供了相应的Python实现代码。
合并两个有序数组的方法:正向双指针法和逆向双指针法,都具有O(m+n)的时间复杂度,但前者的空间复杂度为O(m+n),后者的空间复杂度为O(1),并给出了Python语言的实现代码。
在不使用额外空间的情况下,将链表中的奇数和偶数索引节点重新排序的方法,并提供了相应的Python实现代码。
解决LeetCode "K 个一组翻转链表" 问题的三种方法:使用栈、尾插法和虚拟节点顺序法,并提供了每种方法的Python实现代码。
文章介绍了两种解决LeetCode上"滑动窗口最大值"问题的方法:使用大堆树和双向递减队列,提供了详细的解析和Python代码实现。
使用栈的方法来解决LeetCode上的"接雨水"问题,通过计算柱子之间的凹槽来确定能接多少雨水,并给出了Python语言的实现代码。
文章介绍了PageRank算法的基本概念和数学模型,包括如何通过一阶马尔科夫链定义随机游走模型以及如何计算网页的重要性评分,并提供了PageRank迭代算法的具体步骤。
Apriori关联算法,这是一种用于发现数据集中频繁项集和关联规则的数据挖掘技术,通过迭代过程找出满足最小支持度阈值的项集。
LeetCode题目“739. 每日温度”的Python解决方案,使用单调栈来高效地计算出每天需要等待多少天才能遇到更暖天气的答案。
LeetCode题目“946. 验证栈序列”的Python解决方案,通过模拟栈的压入和弹出操作来验证给定的两个序列是否能通过合法的栈操作得到。
K-Means聚类算法的基本介绍,包括算法步骤、损失函数、优缺点分析以及如何优化和改进算法的方法,还提到了几种改进的K-Means算法,如K-Means++和ISODATA算法。
LeetCode上题目“20. 有效的括号”的Python解决方案,使用栈数据结构来验证括号序列的有效性。具体实现中,会在栈中预先放置一个特殊字符以避免在弹出操作时出现空栈错误,并通过匹配左右括号来判断括号序列是否有效。
介绍了几种不同的方法来合并多个已排序的链表,包括暴力求解、使用小顶堆以及分而治之策略。
采用双指针法来找出两个链表的相交起始节点,并详细解释了算法的时间和空间复杂度。
在Mac系统下使用VSCode的LeetCode插件时遇到“leetcode.toggleleetcodecn”命令找不到的错误解决方法,主要是通过从Nodejs官网下载并安装最新版本的Node.js来解决环境配置问题。
第十届“泰迪杯”数据挖掘挑战赛C题的解决方案,专注于问题三“本地旅游图谱构建与分析”,介绍了基于OTA和UGC数据的旅游产品关联分析方法,使用支持度、置信度、提升度来计算关联度得分,并进行了结果可视化,同时指出了方案的改进方向。
本文提供了解决在VScode中使用LeetCode插件时遇到“Failed to test the solution. Please open the output channel for details.”错误的方法,主要是通过修改setting.json文件中的输出文件夹配置来解决。
第十届“泰迪杯”数据挖掘挑战赛C题的解决方案,专注于疫情背景下的周边游需求图谱分析,具体针对问题二“周边游产品热度分析”,介绍了从OTA和UGC数据中提取旅游产品、计算产品热度得分、判断产品类型的方法,并给出了Python实现步骤和代码。
第十届“泰迪杯”数据挖掘挑战赛C题的解决方案,涉及疫情背景下周边游需求图谱分析,包括微信公众号文章分类、周边游产品热度分析、本地旅游图谱构建与分析,以及疫情前后旅游产品需求变化分析的Python实现方法。
本文介绍了二维装箱问题的Bottom-Left算法,并提供了Python实现,包括主函数、装箱顺序、重叠检测、最终位置计算等,同时指出了算法的缺点并提出了使用人工蜂群算法进行改进的方法,最后提供了完整代码的下载链接。
Python中实现MATLAB中rectint函数的方法,该函数用于计算两个矩形相交区域的面积,并通过定义Rectangle类和calc_area函数展示了如何计算两个矩形的交集面积。
关于2022天府杯数学建模A题“仪器故障智能诊断技术”的一等奖总结,包括问题解析、Python实现代码,涵盖了信号去噪、特征提取、无监督和有监督学习方法在故障诊断中的应用,以及聚类和分类算法的性能评估。
第十届“泰迪杯”数据挖掘挑战赛B题中对电力系统负荷预测分析进行时间突变分析的Python实现方法,包括定义绘图函数、应用阈值查找异常值、手动设置阈值、使用分位数和3Sigma原则(IQR)设定阈值,以及根据分位数找到时间突变的步骤,并提供了完整代码的下载链接。
详细介绍了在第十届“泰迪杯”数据挖掘挑战赛B题中对电力系统负荷进行预测分析的方法,包括数据预处理、特征工程、平稳性检验、数据转换以及使用ARIMA、AutoARIMA、LSTM、Prophet和多元Prophet模型进行建模和预测,并提供了完整代码的下载链接。
解决wxPython安装问题的两种方法,包括通过指定源使用pip安装和先下载.whl文件再本地安装的具体步骤。
总结了2021 MathorCup杯大数据挑战赛A题“二手车估价”的初赛和复赛经验,包括题目要求、解题思路、所用方法和结果,提供了详细的数据分析、模型构建、论文撰写和工具使用技巧,并展示了初赛和复赛的论文。
关于如何在Mac系统下使用SciDavis软件绘制科研论文所需的图表,包括安装指导和创建柱状图、折线图、扇形图的详细步骤教程。
Mathorcup杯大数据挑战赛复赛A题“二手车估价”问题的解题思路和Python实现,包括数据预处理、特征工程、模型训练和预测结果的存储,主要使用了LightGBM模型进行交易周期的预测。
北京大学焦秉立教授在2022年无线通信和物联网专场中对同频同时全双工技术现状和未来展望的介绍,涵盖了全双工技术在5G移动通信中的应用及其对提高频谱效率和传输效率的重要性。
第十届“泰迪杯”数据挖掘挑战赛B题的基线解决方案,涉及电力系统负荷预测分析,包括数据读取、特征处理、模型训练和评估,以及使用了LightGBM进行回归预测。
东南大学尤肖虎教授在2022年无线通信和物联网专场中就超高可靠、超低时延的5G/6G移动通信基础理论研究与发展的讲座内容。
中国工程院张平院士关于"AI使能6G演进与应用"的演讲摘要。
本文提供了针对字典中key为时间字符串或datetime类型时进行排序的解决方案,包括将时间字符串转换为datetime对象排序和直接对datetime类型的key排序的方法。
在Deepin20系统下,如何解决Linux系统中matplotlib和seaborn绘图时出现的中文乱码问题,提供了临时和永久的解决方法,包括更换字体设置、修改配置文件和清除缓存等步骤。
介绍了2021年MathorCup高校数学建模挑战赛赛道A的二手车估价问题,包括数据的读取、宏观查看、缺失值和异常值的检查、数据分布和相关性的分析,以及特征类别的统计,为建立二手车估价模型提供了数据预处理和分析的基础。
参加2021年MathorCup高校数学建模挑战赛赛道A二手车估价问题时进行的特征工程步骤,包括缺失值处理、时间特征提取、特定匿名特征的处理、特征存储以及模型训练过程,并提供了相关代码的下载链接。
文章详细实现了基于不同距离度量(欧氏、切比雪夫、曼哈顿)的Kmeans聚类算法,并提供了Python代码,展示了使用曼哈顿距离计算距离矩阵并输出k=3时的聚类结果和轮廓系数评价指标。
使用Python中的LogisticRegression时遇到TypeError: invalid type promotion错误的解决方法,指出错误原因是因为输入的DataFrame包含datetime类型的数据,并提供了通过删除datetime字段来解决此问题的步骤。
在Deepin 20 Linux系统中如何使用命令行批量解压*.gz文件,提供了具体的命令示例,并简要提及了批量解压*.tar.gz和*.tar.bz2文件的方法。
文章详细介绍了假设检验的基本思想、原理、可能犯的错误类型、基本步骤以及在不同总体情况下的检验方法,阐述了如何在Python中应用假设检验,并通过P值来判断假设的可靠性。
如何在Halcon软件中实现图像亚像素边缘检测,包括读取图片、图像阈值化、边界提取、区域扩张、亚像素边缘提取、轮廓拟合和彩色绘图等步骤,并提供了相应的Halcon代码实现和检测效果展示。
基于灰度矩的亚像素边缘检测方法,包括理论基础和MATLAB实现,通过计算图像的灰度矩来精确定位边缘位置,并提供了详细的MATLAB代码和实验结果图。
【8月更文挑战第5天】Matlab绘制不同类型的图表(包括折线图、柱状图和散点图)的代码示例,以及如何调整图表的字体大小、坐标轴描述、图例和网格线等属性,以满足论文所需的格式要求。
关于2021年亚太杯数学建模赛题A的解析,主要介绍了图像边缘分析与应用的方法,包括亚像素边缘检测、图像目标尺寸测量和亚像素直线段、圆弧段、椭圆段的分割,并提供了MATLAB和Halcon软件的实现方案。
基于Zernike矩的亚像素边缘检测理论,并提供了相应的MATLAB代码实现,包括定义7x7的Zernike模板、图像处理、边缘检测和连通域分析等步骤。
在Deepin Linux系统上安装Halcon机器视觉工具的详细步骤,包括下载安装包、安装、配置环境、复制license文件以及启动Halcon软件。
无线通信中用于减少信号失真和噪声影响的两种常见信道均衡技术:Zero Forcing (ZF) 和 Minimum Mean Square Error (MMSE),并给出了ZF均衡器的数学表达式及其实现方法。