暂时未有相关云产品技术能力~
暂无个人介绍
解题思路 此题思路与557题一致 代码
解题思路 思路就是对称交换,比较简单
解题思路 此题方法有2,第一种是可以直接使用s.split(),但是时间和计算资源占据较大。 第二种方法思路如程序所示,已经注释
说明 采用这种方法虽然简短,但是比较耗时,可以借鉴官方的方法。
解题思路 我们可以将每行和每列的第一个单元格用作标志。从而使空间复杂降到最低。
解题思路 本题思路就是,先将二维数组左右对调,再沿着反对角线对调。
解题思路 本题主要考查二维数组的遍历,我们首先将二维数据降为一维,在进行行列的遍历赋值。
解题思路 以每层圈为单位,遍历矩阵
解题思路 当本题的len(A)<=1时候,结果一定为零。
解题思路 本题的思路,就是查找矩阵M在operation下重叠的部分.
解题思路 类似图像处理的平滑滤波。方法很菜,无话可说,实现都在注释了。
解题思路 分析:本题目要求在原数组上进行操作。比较简单,就不赘述了。
分析:题目让最多改变一个情况下,满足非递减数列。遍历数组,可能存在以下情况。
分析:此题思路比较简单,n-1个数同时加1,相当于每次有一个数自身减1,所以我们可以用数组其他元素与最小值相减,之和即为最小move次数。
思考:此题比较简单,和第448题思想一致。
思考:我们可以设置一个计数器计算每个数出现的次数,最后为0的就是缺失的。 比较简单就不一一赘述
思考:本题目主要是找出数组的度,然后根据度对应的数值找到最短的子数列(度相同),以[2,3,4,3,6,7,7]为例。
思考: 本题目主要是求出列表中重复的数据,并丢找出丢失的整数。
说明 动机 贡献 方法 发现 EagleEye剪枝算法 实验 实验1- 相关性的定量分析 实验2-基于自适应BN的评估方法的通用性 实验3-从修剪候选中选择最佳修剪策略的计算成本 实验4-Effectiveness of our proposed method 总结与讨论
说明 动机 贡献 方法 发现 EagleEye剪枝算法 实验 实验1- 相关性的定量分析 实验2-基于自适应BN的评估方法的通用性 实验3-从修剪候选中选择最佳修剪策略的计算成本 实验4-Effectiveness of our proposed method 总结与讨论
目标:训练一个可以直接以任意宽度运行的单一网络。其实是在权重共享的条件下,我们可以根据不同的硬件设备挑选不同宽度的网络,不再重训练一个权重。
1 摘要 通道修剪是压缩深层神经网络的主要方法之一。
我们定义的网络如下所示
作者提出 基于论文Learning both weights and connections for efficient neural network修剪的方法在保留精度以及实现更高的压缩率方面确实很好。但是,这种改进是以稀疏计算模式的不规则性为代价的。 另一方面结构化的剪枝(例如修剪掉整个过滤器),但是比修剪单个权重会引起更大的精度损失。
图像和视频通常在计算机中表示会占用非常大的空间,而出于节省硬盘空间的考虑,往往要进行压缩。而随着网络的发展,图像压缩技术越来越被人所重视。DCT变换是图像压缩的一项重要技术,本文主要对基于DCT变换的JPEG图像压缩进行研究,并用Matlab进行了算法仿真。实验结果表明, JPEG压缩算法实现简单,在很大的压缩范围内,都能得到很好的重建图像质量。 关键词:DCT变换;JPEG图像;压缩
1. net.parameters()查看网络参数 2. torch.optim.lr_scheduler.MultiStepLR 2.1 学习率的参数配置
1. 介绍 1.1 背景介绍 目前在深度学习中存在一些困境,对于移动是设备来说,主要是算不好;穿戴设备算不来;数据中心,大多数人又算不起 。这就是做模型做压缩与加速的初衷。
1. 介绍 1.1 背景介绍 目前在深度学习中存在一些困境,对于移动是设备来说,主要是算不好;穿戴设备算不来;数据中心,大多数人又算不起 。这就是做模型做压缩与加速的初衷。
语义分割是在像素级别上的分类,属于同一类的像素都要被归为一类,因此语义分割是从像素级别来理解图像的。The Oxford-IIIT Pet Dataset是一个宠物图像数据集,包含37种宠物,每种宠物200张左右宠物图片,并同时包含宠物轮廓标注信息。下面就是tensorflow2.0的对该数据集的语义分割实现。本文基于TF2.0 , 谷歌Colab平台。
语义分割是在像素级别上的分类,属于同一类的像素都要被归为一类,因此语义分割是从像素级别来理解图像的。The Oxford-IIIT Pet Dataset是一个宠物图像数据集,包含37种宠物,每种宠物200张左右宠物图片,并同时包含宠物轮廓标注信息。下面就是tensorflow2.0的对该数据集的语义分割实现。本文基于TF2.0 , 谷歌Colab平台。
对于单纯的分类问题,比较容易理解,给定一副图画,我们输出一个标签的类别。而对于定位问题,需要输出四个数字(x,y,w,h),图像的某一点坐标(x,y),以及图像的宽度和高度,有了这四个数字,我们很容易找到物体的边框。
1. 简单介绍 2. 加载相关数据包 2.1 图片的路径的配置 2.2 读取图片 3. 图片预处理 4. 训练阶段 4.1 设置验证集与数据集 4.2 构建模型并训练 5. 模型评估
1.构建自定义层 1.1 基本模型框架构建 1.2 延迟创建权重,直到知道输入的形状 1.3 层的递归组合 1.4 层中创建loss张量 1.5 选择性地将层序列化 1.6 在call方法中给与训练参数特权 2. 建立模型
1.构建自定义层 1.1 基本模型框架构建 1.2 延迟创建权重,直到知道输入的形状 1.3 层的递归组合 1.4 层中创建loss张量 1.5 选择性地将层序列化 1.6 在call方法中给与训练参数特权 2. 建立模型
直方图均衡化(Histogram Equalization) 又称直方图平坦化,实质上是对图像进行非线性拉伸,重新分配图像象元值,使一定灰度范围内象元值的数量大致相等。这样,原来直方图中间的峰顶部分对比度得到增强,而两侧的谷底部分对比度降低,输出图像的直方图是一个较平的分段直方图:如果输出数据分段值较小的话,会产生粗略分类的视觉效果。
在上一篇文章中,我们介绍了利用tensorflow封装好的神经网络来训练猫狗数据集。但是在科研中有时我们需要对网络进行修改,这是我们就需要自定义网络训练。 第一部分我们已经介绍了图片的读取,这里就不在一一赘述tebsorflow2.0 tf.keras猫狗识别,我们直接从图片的预处理。
对比tensorflow1.x版本静态图模式,tensorflow2.x推荐使用的是eager模式,即动态计算模式,它的特点是运算可以立即得到结果。我们可以通过tf.executing_eagerly()来判断是不是eager模式,如果返回的为True,使用的则为eager模式。首先我们简答介绍一下在eager模式下的计算。
对比tensorflow1.x版本静态图模式,tensorflow2.x推荐使用的是eager模式,即动态计算模式,它的特点是运算可以立即得到结果。我们可以通过tf.executing_eagerly()来判断是不是eager模式,如果返回的为True,使用的则为eager模式。首先我们简答介绍一下在eager模式下的计算。
1. 简单介绍 本文的应用场景是二分类问题,采用的数据集为猫狗分类数据集,为了减少训练时间,训练集图片有2123张,验证集有909 张图片,测试的图片有1000张,分为猫和狗两个类别,图片已经放置在dc_2000文件夹下面。
1. 简单介绍 本文的应用场景是二分类问题,采用的数据集为猫狗分类数据集,为了减少训练时间,训练集图片有2123张,验证集有909 张图片,测试的图片有1000张,分为猫和狗两个类别,图片已经放置在dc_2000文件夹下面。
本节是主要介绍的是序列问题的处理,采用的数据集为电影评论数据集,我们通过keras.datasets.imdb直接导入,之后我们建立模型,对其进行分类,并处理过拟合问题。
本实例主要介绍 利用tf.data读取图片的方法 卷积神经网络的构建 训练以及测试
本实例主要介绍 利用tf.data读取图片的方法 卷积神经网络的构建 训练以及测试
1. tf.keras实现线性回归(1) 1.1 Income数据导入可视化
1. tf.keras实现线性回归(1) 1.1 Income数据导入可视化
目录 1 easydict的使用 2. 集合(set) 3 plt.subplots()使用 3.1 方法1 3.2 方法2 4. assert断言
如果为True,则会默认将变量添加到图形集合GraphKeys.TRAINABLE_VARIABLES中。此集合用于优化器Optimizer类优化的的默认变量列表,如果为False则在训练时不会更新该值。
流程: 读图片(512, 512, 3)–>下采样,降低维度(256, 256, 3)–>将通道展平,data = (65536, 3)–>归一化
目录 1. 计算模型复杂度的衡量 2 . 典型层的复杂性计算原理 2.1 全连接层的复杂性计算 2.2 卷积层的复杂性计算 3. 全连接Tensorflow实现
ensor和numpy