(2)tf.Variable中trainable作用

简介: 如果为True,则会默认将变量添加到图形集合GraphKeys.TRAINABLE_VARIABLES中。此集合用于优化器Optimizer类优化的的默认变量列表,如果为False则在训练时不会更新该值。

如果为True,则会默认将变量添加到图形集合GraphKeys.TRAINABLE_VARIABLES中。此集合用于优化器Optimizer类优化的的默认变量列表,如果为False则在训练时不会更新该值。

global_step = tf.Variable(0, trainable=False)
相关文章
|
3月前
|
缓存 TensorFlow 算法框架/工具
TensorFlow学习笔记(一): tf.Variable() 和tf.get_variable()详解
这篇文章详细介绍了TensorFlow中`tf.Variable()`和`tf.get_variable()`的使用方法、参数含义以及它们之间的区别。
179 0
|
API 数据格式
TensorFlow2._:model.summary() Output Shape为multiple解决方法
TensorFlow2._:model.summary() Output Shape为multiple解决方法
298 0
TensorFlow2._:model.summary() Output Shape为multiple解决方法
|
并行计算 Python
TypeError: can‘t convert CUDA tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory
运行程序,出现报错信息 TypeError: can't convert CUDA tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory first.。
341 0
|
PyTorch 算法框架/工具 图计算
Pytorch中autograd.Variable.backward的grad_varables参数个人理解浅见
Pytorch中autograd.Variable.backward的grad_varables参数个人理解浅见
142 0
Pytorch中autograd.Variable.backward的grad_varables参数个人理解浅见
|
算法框架/工具 Windows
|
机器学习/深度学习 缓存 TensorFlow
TF:tensorflow框架中常用函数介绍—tf.Variable()和tf.get_variable()用法及其区别
TF:tensorflow框架中常用函数介绍—tf.Variable()和tf.get_variable()用法及其区别
|
TensorFlow 算法框架/工具
成功解决AttributeError: module ‘tensorflow‘ has no attribute ‘get_variable‘
成功解决AttributeError: module ‘tensorflow‘ has no attribute ‘get_variable‘
|
TensorFlow 算法框架/工具
TensorFlow教程(6) tf.Variable() 和tf.get_variable()
TensorFlow教程(6) tf.Variable() 和tf.get_variable()
190 0
|
机器学习/深度学习 TensorFlow 算法框架/工具
TF之RNN:TF的RNN中的常用的两种定义scope的方式get_variable和Variable
TF之RNN:TF的RNN中的常用的两种定义scope的方式get_variable和Variable
TF之RNN:TF的RNN中的常用的两种定义scope的方式get_variable和Variable
|
TensorFlow 算法框架/工具
TF:TF定义两个变量相乘之placeholder先hold类似变量+feed_dict最后外界传入值
TF:TF定义两个变量相乘之placeholder先hold类似变量+feed_dict最后外界传入值
TF:TF定义两个变量相乘之placeholder先hold类似变量+feed_dict最后外界传入值