tebsorflow2.0 卷积神经网络的实现实例(下)

简介: 本实例主要介绍利用tf.data读取图片的方法卷积神经网络的构建训练以及测试

结果:

Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
conv2d (Conv2D)              (None, 254, 254, 64)      1792      
_________________________________________________________________
conv2d_1 (Conv2D)            (None, 252, 252, 64)      36928     
_________________________________________________________________
max_pooling2d (MaxPooling2D) (None, 126, 126, 64)      0         
_________________________________________________________________
conv2d_2 (Conv2D)            (None, 124, 124, 128)     73856     
_________________________________________________________________
conv2d_3 (Conv2D)            (None, 122, 122, 128)     147584    
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 61, 61, 128)       0         
_________________________________________________________________
conv2d_4 (Conv2D)            (None, 59, 59, 256)       295168    
_________________________________________________________________
conv2d_5 (Conv2D)            (None, 57, 57, 256)       590080    
_________________________________________________________________
max_pooling2d_2 (MaxPooling2 (None, 28, 28, 256)       0         
_________________________________________________________________
conv2d_6 (Conv2D)            (None, 26, 26, 512)       1180160   
_________________________________________________________________
max_pooling2d_3 (MaxPooling2 (None, 13, 13, 512)       0         
_________________________________________________________________
conv2d_7 (Conv2D)            (None, 11, 11, 512)       2359808   
_________________________________________________________________
max_pooling2d_4 (MaxPooling2 (None, 5, 5, 512)         0         
_________________________________________________________________
conv2d_8 (Conv2D)            (None, 3, 3, 1024)        4719616   
_________________________________________________________________
global_average_pooling2d (Gl (None, 1024)              0         
_________________________________________________________________
dense (Dense)                (None, 1024)              1049600   
_________________________________________________________________
dense_1 (Dense)              (None, 256)               262400    
_________________________________________________________________
dense_2 (Dense)              (None, 1)                 257       
=================================================================
Total params: 10,717,249
Trainable params: 10,717,249
Non-trainable params: 0
_________________________________________________________________

4.2 训练

steps_per_eooch = train_count//batch_size
validation_steps = test_count//batch_size
history = model.fit(train_ds,epochs=30,steps_per_epoch=steps_per_eooch,validation_data=test_ds,validation_steps=validation_steps)
Epoch 1/30
35/35 [==============================] - 20s 565ms/step - loss: 0.8902 - acc: 0.5688 - val_loss: 0.4821 - val_acc: 0.8672
Epoch 2/30
35/35 [==============================] - 19s 556ms/step - loss: 0.7571 - acc: 0.6170 - val_loss: 0.6877 - val_acc: 0.5078
Epoch 3/30
35/35 [==============================] - 19s 556ms/step - loss: 0.6371 - acc: 0.6232 - val_loss: 0.4861 - val_acc: 0.8008
Epoch 4/30
35/35 [==============================] - 19s 555ms/step - loss: 0.4127 - acc: 0.8554 - val_loss: 0.2898 - val_acc: 0.9062
Epoch 5/30
35/35 [==============================] - 19s 557ms/step - loss: 0.4168 - acc: 0.7688 - val_loss: 0.4776 - val_acc: 0.5000
Epoch 6/30
35/35 [==============================] - 19s 555ms/step - loss: 0.4127 - acc: 0.7080 - val_loss: 0.2026 - val_acc: 0.9297
Epoch 7/30
35/35 [==============================] - 19s 556ms/step - loss: 0.2303 - acc: 0.9384 - val_loss: 0.1515 - val_acc: 0.9453
Epoch 8/30
35/35 [==============================] - 19s 556ms/step - loss: 0.1769 - acc: 0.9491 - val_loss: 0.1918 - val_acc: 0.9531
Epoch 9/30
35/35 [==============================] - 19s 556ms/step - loss: 0.1526 - acc: 0.9518 - val_loss: 0.0907 - val_acc: 0.9727
Epoch 10/30
35/35 [==============================] - 19s 556ms/step - loss: 0.1172 - acc: 0.9625 - val_loss: 0.0790 - val_acc: 0.9766
Epoch 11/30
35/35 [==============================] - 19s 556ms/step - loss: 0.1337 - acc: 0.9482 - val_loss: 0.0888 - val_acc: 0.9805
Epoch 12/30
35/35 [==============================] - 19s 556ms/step - loss: 0.1312 - acc: 0.9536 - val_loss: 0.1095 - val_acc: 0.9805
Epoch 13/30
35/35 [==============================] - 19s 555ms/step - loss: 0.4718 - acc: 0.9027 - val_loss: 0.2007 - val_acc: 0.9141
Epoch 14/30
35/35 [==============================] - 19s 554ms/step - loss: 0.1906 - acc: 0.9321 - val_loss: 0.1523 - val_acc: 0.9609
Epoch 15/30
35/35 [==============================] - 19s 554ms/step - loss: 0.1567 - acc: 0.9554 - val_loss: 0.0998 - val_acc: 0.9727
Epoch 16/30
35/35 [==============================] - 19s 555ms/step - loss: 0.1333 - acc: 0.9589 - val_loss: 0.1101 - val_acc: 0.9805
Epoch 17/30
35/35 [==============================] - 19s 554ms/step - loss: 0.1245 - acc: 0.9679 - val_loss: 0.0773 - val_acc: 0.9844
Epoch 18/30
35/35 [==============================] - 19s 554ms/step - loss: 0.1157 - acc: 0.9652 - val_loss: 0.0978 - val_acc: 0.9805
Epoch 19/30
35/35 [==============================] - 19s 553ms/step - loss: 0.1237 - acc: 0.9688 - val_loss: 0.0766 - val_acc: 0.9766
Epoch 20/30
35/35 [==============================] - 19s 554ms/step - loss: 0.1069 - acc: 0.9670 - val_loss: 0.0850 - val_acc: 0.9805
Epoch 21/30
35/35 [==============================] - 19s 554ms/step - loss: 0.1234 - acc: 0.9696 - val_loss: 0.0670 - val_acc: 0.9805
Epoch 22/30
35/35 [==============================] - 19s 553ms/step - loss: 0.0945 - acc: 0.9741 - val_loss: 0.0665 - val_acc: 0.9805
Epoch 23/30
35/35 [==============================] - 19s 553ms/step - loss: 0.1293 - acc: 0.9679 - val_loss: 0.0733 - val_acc: 0.9805
Epoch 24/30
35/35 [==============================] - 19s 553ms/step - loss: 0.1314 - acc: 0.9607 - val_loss: 0.0785 - val_acc: 0.9805
Epoch 25/30
35/35 [==============================] - 19s 554ms/step - loss: 0.1082 - acc: 0.9661 - val_loss: 0.0637 - val_acc: 0.9844
Epoch 26/30
35/35 [==============================] - 19s 554ms/step - loss: 0.1139 - acc: 0.9714 - val_loss: 0.0671 - val_acc: 0.9805
Epoch 27/30
35/35 [==============================] - 19s 553ms/step - loss: 0.1266 - acc: 0.9652 - val_loss: 0.0688 - val_acc: 0.9766
Epoch 28/30
35/35 [==============================] - 19s 553ms/step - loss: 0.0986 - acc: 0.9696 - val_loss: 0.0668 - val_acc: 0.9844
Epoch 29/30
35/35 [==============================] - 19s 553ms/step - loss: 0.0882 - acc: 0.9723 - val_loss: 0.0513 - val_acc: 0.9805
Epoch 30/30
35/35 [==============================] - 19s 554ms/step - loss: 0.0832 - acc: 0.9777 - val_loss: 0.0423 - val_acc: 0.9883

5. 结果

这一部分我们将展示测试集合验证集的准确度和损失的变化趋势’

history.history.keys()
plt.plot(history.epoch, history.history.get('acc'), label='acc')
plt.plot(history.epoch, history.history.get('val_acc'), label='val_acc')
plt.legend()
plt.show()

plt.plot(history.epoch, history.history.get('loss'), label='loss')
plt.plot(history.epoch, history.history.get('val_loss'), label='val_loss')
plt.legend()

相关文章
|
2天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
91 55
|
12天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
83 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
16天前
|
机器学习/深度学习 资源调度 算法
图卷积网络入门:数学基础与架构设计
本文系统地阐述了图卷积网络的架构原理。通过简化数学表述并聚焦于矩阵运算的核心概念,详细解析了GCN的工作机制。
42 3
图卷积网络入门:数学基础与架构设计
|
11天前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)##
在当今的人工智能领域,深度学习已成为推动技术革新的核心力量之一。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,因其在图像和视频处理方面的卓越性能而备受关注。本文旨在深入探讨CNN的基本原理、结构及其在实际应用中的表现,为读者提供一个全面了解CNN的窗口。 ##
|
22天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN): 从理论到实践
本文将深入浅出地介绍卷积神经网络(CNN)的工作原理,并带领读者通过一个简单的图像分类项目,实现从理论到代码的转变。我们将探索CNN如何识别和处理图像数据,并通过实例展示如何训练一个有效的CNN模型。无论你是深度学习领域的新手还是希望扩展你的技术栈,这篇文章都将为你提供宝贵的知识和技能。
71 7
|
22天前
|
弹性计算 监控 数据库
制造企业ERP系统迁移至阿里云ECS的实例,详细介绍了从需求分析、数据迁移、应用部署、网络配置到性能优化的全过程
本文通过一个制造企业ERP系统迁移至阿里云ECS的实例,详细介绍了从需求分析、数据迁移、应用部署、网络配置到性能优化的全过程,展示了企业级应用上云的实践方法与显著优势,包括弹性计算资源、高可靠性、数据安全及降低维护成本等,为企业数字化转型提供参考。
43 5
|
19天前
|
机器学习/深度学习 自然语言处理 算法
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
27 1
|
25天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
本文旨在通过深入浅出的方式,为读者揭示卷积神经网络(CNN)的神秘面纱,并展示其在图像识别领域的实际应用。我们将从CNN的基本概念出发,逐步深入到网络结构、工作原理以及训练过程,最后通过一个实际的代码示例,带领读者体验CNN的强大功能。无论你是深度学习的初学者,还是希望进一步了解CNN的专业人士,这篇文章都将为你提供有价值的信息和启发。
|
21天前
|
机器学习/深度学习 人工智能 自然语言处理
探索深度学习中的卷积神经网络(CNN)及其在现代应用中的革新
探索深度学习中的卷积神经网络(CNN)及其在现代应用中的革新
|
19天前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)

热门文章

最新文章