什么是NLP(自然语言处理)?
自然语言处理( Natural Language Processing, NLP)是计算机科学领域与人工智能领域中的一个重要方向。它研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法。自然语言处理是一门融语言学、计算机科学、数学于一体的科学。因此,这一领域的研究将涉及自然语言,即人们日常使用的语言,所以它与语言学的研究有着密切的联系,但又有重要的区别。自然语言处理并不是一般地研究自然语言,而在于研制能有效地实现自然语言通信的计算机系统,特别是其中的软件系统。因而它是计算机科学的一部分。
NLP基础知识
自然语言处理(NLP)是计算机科学的交叉领域,涉及语言学、计算机科学和人工智能,用于让计算机理解、生成和处理人类语言。核心任务包括文本预处理、语言模型、文本分类、信息提取和机器翻译。常用工具有NLTK、spaCy和Hugging Face Transformers。深度学习,尤其是Transformer模型,极大地推动了NLP的进步。应用场景广泛,如搜索引擎、智能助手和医疗分析。未来趋势将聚焦多模态学习、跨语言理解和情绪识别,同时追求模型的可解释性和公平性。
Qwen-MT:翻得快,译得巧
今天,机器翻译模型Qwen-MT正式上线,支持92种语言互译,具备高度可控性与低延迟、低成本特点,适用于多种场景。开发者可通过Qwen API体验其强大翻译能力。
Python自然语言处理:NLTK入门指南
自然语言处理(Natural Language Processing,NLP)是指计算机处理人类语言的领域。它是一门多学科交叉的学科,将计算机科学、人工智能、语言学等诸多学科的理论和方法融合在一起,将人类语言转化为计算机所能理解的形式,实现对人类语言的自动处理、理解和生成。NLP可以应用到很多方面,比如语音识别、机器翻译、情感分析、智能客服等