MaxCompute Mars开发指南
Mars 算法实践
人脸识别
Mars 是一个基于矩阵的统一分布式计算框架 ,而且 Mars 已经在 GitHub 中开源。当你看完 Mars 的介绍可能会问它能做什么,这几乎取决于你想做什么,因为 Mars 作为底层运算库,实现了 numpy 70% 的常用接口。
一文快速读懂Transformer
Transformer模型近年来成为自然语言处理(NLP)领域的焦点,其强大的特征提取能力和并行计算优势在众多任务中取得显著效果。本文详细解读Transformer的原理,包括自注意力机制和编码器-解码器结构,并提供基于PyTorch的代码演示,展示了其在文本分类等任务中的应用。
深入剖析Transformer架构中的多头注意力机制
多头注意力机制(Multi-Head Attention)是Transformer模型中的核心组件,通过并行运行多个独立的注意力机制,捕捉输入序列中不同子空间的语义关联。每个“头”独立处理Query、Key和Value矩阵,经过缩放点积注意力运算后,所有头的输出被拼接并通过线性层融合,最终生成更全面的表示。多头注意力不仅增强了模型对复杂依赖关系的理解,还在自然语言处理任务如机器翻译和阅读理解中表现出色。通过多头自注意力机制,模型在同一序列内部进行多角度的注意力计算,进一步提升了表达能力和泛化性能。
LLM-AI大模型介绍
大语言模型(LLM)是深度学习的产物,包含数十亿至数万亿参数,通过大规模数据训练,能处理多种自然语言任务。LLM基于Transformer架构,利用多头注意力机制处理长距离依赖,经过预训练和微调,擅长文本生成、问答等。发展经历了从概率模型到神经网络,再到预训练和大模型的演变。虽然强大,但存在生成不当内容、偏见等问题,需要研究者解决。评估指标包括BLEU、ROUGE和困惑度PPL。
Qwen-MT:翻得快,译得巧
今天,机器翻译模型Qwen-MT正式上线,支持92种语言互译,具备高度可控性与低延迟、低成本特点,适用于多种场景。开发者可通过Qwen API体验其强大翻译能力。
什么是NLP(自然语言处理)?
自然语言处理( Natural Language Processing, NLP)是计算机科学领域与人工智能领域中的一个重要方向。它研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法。自然语言处理是一门融语言学、计算机科学、数学于一体的科学。因此,这一领域的研究将涉及自然语言,即人们日常使用的语言,所以它与语言学的研究有着密切的联系,但又有重要的区别。自然语言处理并不是一般地研究自然语言,而在于研制能有效地实现自然语言通信的计算机系统,特别是其中的软件系统。因而它是计算机科学的一部分。