Hive怎么调整优化Tez引擎的查询?在Tez上优化Hive查询的指南
在Tez上优化Hive查询,包括配置参数调整、理解并行化机制以及容器管理。关键步骤包括YARN调度器配置、安全阀设置、识别性能瓶颈(如mapper/reducer任务和连接操作),理解Tez如何动态调整mapper和reducer数量。例如,`tez.grouping.max-size` 影响mapper数量,`hive.exec.reducers.bytes.per.reducer` 控制reducer数量。调整并发和容器复用参数如`hive.server2.tez.sessions.per.default.queue` 和 `tez.am.container.reuse.enabled`
Trino权威指南
Trino(原Presto SQL)是一款开源分布式SQL查询引擎,专为大数据联邦查询设计。它支持秒级查询PB级数据,可无缝对接Hive、MySQL、Kafka等20+异构数据源。其核心特性包括高速查询、弹性扩展和低成本使用,适合交互式分析与BI场景。Trino采用无共享架构,通过列式内存格式和动态代码生成优化性能,并提供丰富的连接器实现计算存储分离,最大化下推优化以提升效率。
seatunnel配置mysql2hive
本文介绍了SeaTunnel的安装与使用教程,涵盖从安装、配置到数据同步的全过程。主要内容包括:
1. **SeaTunnel安装**:详细描述了下载、解压及配置连接器等步骤。
2. **模拟数据到Hive (fake2hive)**:通过编辑测试脚本,将模拟数据写入Hive表。
3. **MySQL到控制台 (mysql2console)**:创建配置文件并执行命令,将MySQL数据输出到控制台。
4. **MySQL到Hive (mysql2hive)**:创建Hive表,配置并启动同步任务,支持单表和多表同步。
Spark 为什么比 Hive 快
Spark与Hive在数据处理上有显著区别。Spark以其内存计算和线程级并行提供更快的速度,但稳定性受内存限制。相比之下,Hive虽较慢,因使用MapReduce,其稳定性更高,对内存需求较小。在Shuffle方式上,Spark的内存 Shuffle 比Hive的磁盘 Shuffle 更高效。综上,Spark在处理速度和Shuffle上占优,Hive则在稳定性和资源管理上更胜一筹。
了解Hive 工作原理:Hive 是如何工作的?
Apache Hive 是一个建立在 Hadoop 之上的分布式数据仓库系统,提供类 SQL 查询语言 HiveQL,便于用户进行大规模数据分析。Hive Metastore(HMS)是其关键组件,用于存储表和分区的元数据。Hive 将 SQL 查询转换为 MapReduce 任务执行,适合处理 PB 级数据,但查询效率较低,不适合实时分析。优点包括易于使用、可扩展性强;缺点则在于表达能力有限和不支持实时查询。