InfluxDB与Telegraf:数据采集与监控实战
【4月更文挑战第30天】本文介绍了InfluxDB和Telegraf在数据采集与监控中的应用。InfluxDB是高性能的时序数据库,适合高吞吐量和实时查询,而Telegraf是数据采集代理,能收集多种系统指标并发送至InfluxDB。实战部分涉及安装配置两者,通过Telegraf收集数据,然后使用InfluxDB查询分析,配合Grafana实现可视化展示,从而实现有效的监控解决方案。
Apache IoTDB进行IoT相关开发实践
IoTDB是专为物联网(IoT)设计的开源时间序列数据库,提供数据收集、存储、管理和分析。它支持高效的数据写入、查询,适用于处理大规模物联网数据,包括流数据、时间序列等。IoTDB采用轻量级架构,可与Hadoop和Spark集成,支持多种存储策略,确保数据安全和高可用性。此外,它还具有InfluxDB协议适配器,允许无缝迁移和兼容InfluxDB的API和查询语法,简化物联网项目的数据管理。随着物联网设备数量的快速增长,选择适合的数据库如IoTDB对于数据管理和分析至关重要。
CIG重量级监控
CIG(cAdvisor+InfluxDB+Grafana)是一套容器监控解决方案。cAdvisor采集容器资源数据,InfluxDB存储时序数据,Grafana可视化展示,支持报警与多数据源,实现对Docker容器的全面监控与历史数据分析,适用于中小型系统运维监控。
市面常见数据存储方式的简单介绍
下面是市面上一些存储方式概念的简单介绍,包含关系型数据库,非关系型数据库,内存数据库,数据仓库,对象存储,图数据库,时序数据库和多维数据库
InfluxDB的连续查询与数据聚合技术详解
【4月更文挑战第30天】InfluxDB的连续查询(CQ)功能用于自动定时聚合时间序列数据,适用于数据降采样、实时分析和告警通知等场景。CQ使用InfluxQL编写,例如,每1小时对`cpu_usage`测量值计算主机的平均CPU使用率并存入`cpu_usage_hourly`。InfluxDB提供多种聚合函数如`MEAN()`, `MAX()`, 支持滑动窗口聚合等复杂操作,助力时间序列数据分析和趋势预测。通过CQ,用户能高效管理和利用时间序列数据信息。