时序数据库

首页 标签 时序数据库
# 时序数据库 #
关注
1128内容
实时计算 Flink版操作报错之采集fink指标写入 InfluxDB 时遇到报错,如何处理
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
| |
来自: 数据库
时序数据库连载系列: 时序数据库一哥InfluxDB之存储机制解析
InfluxDB 的存储机制解析 本文介绍了InfluxDB对于时序数据的存储/索引的设计。由于InfluxDB的集群版已在0.12版就不再开源,因此如无特殊说明,本文的介绍对象都是指 InfluxDB 单机版 1. InfluxDB 的存储引擎演进 尽管InfluxDB自发布以来历时三年多,其存储引擎的技术架构已经做过几次重大的改动, 以下将简要介绍一下InfluxDB的存储引擎演进的过程。
什么是时序数据库
【7月更文挑战第7天】时序数据库专注存储按时间排序的数据,用于实时监控与分析指标趋势。
InfluxDB最佳实践:数据模型设计与查询优化
【4月更文挑战第30天】本文探讨了InfluxDB的最佳实践,重点在于数据模型设计和查询优化。合理选择字段类型,根据业务逻辑划分Measurement,利用Tags进行索引优化,以及适时数据归档和清理,能有效提升性能。查询优化包括使用索引、精简查询语句、应用聚合函数及限制返回结果。分布式查询和分片适用于大规模数据集,以实现并行查询和负载均衡。这些策略旨在帮助用户优化InfluxDB的性能,进行高效时序数据分析。
免费试用