算法框架/工具

首页 标签 算法框架/工具
# 算法框架/工具 #
关注
10834内容
深度学习环境搭建笔记(一):detectron2安装过程
这篇博客文章详细介绍了在Windows环境下,使用CUDA 10.2配置深度学习环境,并安装detectron2库的步骤,包括安装Python、pycocotools、Torch和Torchvision、fvcore,以及对Detectron2和PyTorch代码的修改。
134_边缘推理:TensorFlow Lite - 优化移动端LLM部署技术详解与实战指南
在人工智能与移动计算深度融合的今天,将大语言模型(LLM)部署到移动端和边缘设备已成为行业发展的重要趋势。TensorFlow Lite作为专为移动和嵌入式设备优化的轻量级推理框架,为开发者提供了将复杂AI模型转换为高效、低功耗边缘计算解决方案的强大工具。随着移动设备硬件性能的不断提升和模型压缩技术的快速发展,2025年的移动端LLM部署已不再是遥远的愿景,而是正在成为现实的技术实践。
e - 一个神奇的存在
本文介绍了数学常数e,即自然对数的底,约等于2.71828,由欧拉命名。e是一个无限不循环小数,可通过级数1 + 1/n!表示。e在数学、物理、工程和计算机科学等领域有广泛应用,尤其在微积分、复利、概率统计和算法分析中扮演关键角色。它是自然界和科学研究中的基本概念。
|
8月前
|
卷不过AI就驯服它!AI训练师速成攻略
这是一篇关于AI训练师职业的全面指南。文章从“驯服AI”的理念出发,将AI训练师比作“幼儿园老师”,详细描述了该职业的工作内容、入行技能要求、成长路径及工作日常。新手可以从基础的数据标注做起,逐步学习Python、数学知识和工具使用,通过三年计划实现职业进阶。文中还分享了摸鱼技巧、崩溃与高光时刻,以及避坑建议和未来转型方向。无论是在电商公司给商品打标签,还是训练医疗AI辅助诊断,这个职业都充满挑战与机遇。最后鼓励大家主动拥抱变化,把AI变成自己的左膀右臂,而非竞争对手。
本地部署DeepSeek模型
要在本地部署DeepSeek模型,需准备Linux(推荐Ubuntu 20.04+)或兼容的Windows/macOS环境,配备NVIDIA GPU(建议RTX 3060+)。安装Python 3.8+、PyTorch/TensorFlow等依赖,并通过官方渠道下载模型文件。配置模型后,编写推理脚本进行测试,可选使用FastAPI服务化部署或Docker容器化。注意资源监控和许可协议。
|
4月前
| |
Flow Matching生成模型:从理论基础到Pytorch代码实现
本文将系统阐述Flow Matching的完整实现过程,包括数学理论推导、模型架构设计、训练流程构建以及速度场学习等关键组件。通过本文的学习,读者将掌握Flow Matching的核心原理,获得一个完整的PyTorch实现,并对生成模型在噪声调度和分数函数之外的发展方向有更深入的理解。
免费试用