PyTorch

首页 标签 PyTorch
# PyTorch #
关注
4934内容
TensorFlow与PyTorch深度对比分析:从基础原理到实战选择的完整指南
蒋星熠Jaxonic,深度学习探索者。本文深度对比TensorFlow与PyTorch架构、性能、生态及应用场景,剖析技术选型关键,助力开发者在二进制星河中驾驭AI未来。
|
2月前
|
卷积神经网络深度解析:从基础原理到实战应用的完整指南
蒋星熠Jaxonic,深度学习探索者。深耕TensorFlow与PyTorch,分享框架对比、性能优化与实战经验,助力技术进阶。
|
2月前
|
PyTorch深度学习 ? 带你从入门到精通!!!
🌟 蒋星熠Jaxonic,深度学习探索者。三年深耕PyTorch,从基础到部署,分享模型构建、GPU加速、TorchScript优化及PyTorch 2.0新特性,助力AI开发者高效进阶。
|
3月前
| |
来自: 视觉智能
pytorch基于AnimeFace128数据集训练DCGAN
基于AnimeFace128数据集,使用PyTorch构建DCGAN生成动漫人脸。包含生成器与判别器网络设计、数据加载及训练流程,通过对抗学习生成64×64清晰图像。
|
3月前
| |
Transformer自回归关键技术:掩码注意力原理与PyTorch完整实现
掩码注意力是生成模型的核心,通过上三角掩码限制模型仅关注当前及之前token,确保自回归因果性。相比BERT的双向注意力,它实现单向生成,是GPT等模型逐词预测的关键机制,核心仅需一步`masked_fill_`操作。
|
3月前
|
【变分高斯Copula推断】基于Bernstein多项式的非参数转换则在描述单变量边缘后验时提供了充分的灵活性(Matlab代码实现)
【变分高斯Copula推断】基于Bernstein多项式的非参数转换则在描述单变量边缘后验时提供了充分的灵活性(Matlab代码实现)
|
3月前
| |
编码器-解码器架构详解:Transformer如何在PyTorch中工作
本文深入解析Transformer架构,结合论文与PyTorch源码,详解编码器、解码器、位置编码及多头注意力机制的设计原理与实现细节,助你掌握大模型核心基础。建议点赞收藏,干货满满。
|
3月前
| |
Neural ODE原理与PyTorch实现:深度学习模型的自适应深度调节
Neural ODE将神经网络与微分方程结合,用连续思维建模数据演化,突破传统离散层的限制,实现自适应深度与高效连续学习。
|
3月前
| |
来自: 物联网
SpQR: 稀疏量化表示实现大语言模型近无损压缩——论文阅读
SpQR是一种创新的稀疏量化方法,通过识别并高精度存储导致大量化误差的异常权重,将其他权重压缩至3-4比特,实现大语言模型的近无损压缩。该方法在LLM压缩中首次跨模型规模达到接近16位精度的性能,压缩后模型平均误差低于1%。实验表明,SpQR在推理速度与压缩率上优于现有技术,使高质量大模型可在消费级设备高效运行。
免费试用