Apache Spark详解
Apache Spark 是一个开源、分布式计算引擎,专为大规模数据处理设计。它以高速、易用和通用为核心目标。通过内存计算、DAG 执行引擎和惰性求值等特性,大幅提升数据处理效率。其核心组件包括 Spark Core、Spark SQL、Spark Streaming、MLlib 和 GraphX,支持批处理、实时流处理、机器学习和图计算。Spark 提供统一编程模型,支持多语言(Scala/Java/Python/R),并拥有强大的 Catalyst 优化器和类型安全的 Dataset API,广泛应用于大数据分析和处理场景。
《深度探秘:Java构建Spark MLlib与TensorFlow Serving混合推理流水线》
本文探讨了如何结合Apache Spark MLlib、TensorFlow Serving和Java构建混合推理流水线。Spark MLlib利用分布式计算高效处理大规模数据,完成模型训练;TensorFlow Serving专注于模型部署,提供稳定高效的推理服务;Java则以其稳健性协调两者,实现高性能与扩展性。文章分析了环境搭建、模型训练与集成、输入输出处理及性能优化等关键环节,并讨论了兼容性与性能瓶颈等挑战。这一架构在医疗、金融等领域具有广阔应用前景,展现了强大的技术潜力。
MCP、MaxFrame与大数据技术全景解析
本文介绍了 MCP 协议、MaxFrame 分布式计算框架以及大数据基础设施建设的相关内容。MCP(Model Context Protocol)是一种开源协议,旨在解决 AI 大模型与外部数据源及工具的集成问题,被比喻为大模型的“USB 接口”,通过统一交互方式降低开发复杂度。其核心架构包括 Client、Server、Tool 和 Schema 四个关键概念,并在百炼平台中得到实践应用。MaxFrame 是基于 Python 的高性能分布式计算引擎,支持多模态数据处理与 AI 集成,结合 MaxCompute 提供端到端的数据处理能力。
阿里云服务器内存型实例怎么选?r7/r8y/r8i实例性能、适用场景与选择参考
在选择阿里云服务器时,针对内存密集型应用和数据库应用,内存型实例因其高内存配比和优化的性能表现,成为了众多用户的热门选择。在目前阿里云的活动中,内存型实例主要有内存型r7、内存型r8y和内存型r8i实例可选。为了帮助大家更好地了解这三款实例的区别,本文将详细对比它们的实例规格、CPU、内存、计算、存储、网络等方面的性能,并附上活动价格对比,以便用户能够全面了解它们之间的不同,以供选择和参考。
StarRocks x Iceberg:云原生湖仓分析技术揭秘与最佳实践
本文将深入探讨基于 StarRocks 和 Iceberg 构建的云原生湖仓分析技术,详细解析两者结合如何实现高效的查询性能优化。内容涵盖 StarRocks Lakehouse 架构、与 Iceberg 的性能协同、最佳实践应用以及未来的发展规划,为您提供全面的技术解读。
作者:杨关锁,北京镜舟科技研发工程师
使用DataWorks PyODPS节点调用XGBoost算法
本文介绍如何在DataWorks中通过PyODPS3节点调用XGBoost算法完成模型训练与测试,并实现周期离线调度。主要内容包括:1) 使用ODPS SQL构建数据集;2) 创建PyODPS3节点进行数据处理与模型训练;3) 构建支持XGBoost的自定义镜像;4) 测试运行并选择对应镜像。适用于需要集成机器学习算法到大数据工作流的用户。