分布式计算

首页 标签 分布式计算
# 分布式计算 #
关注
37751内容
构建AI时代的大数据基础设施-MaxCompute多模态数据处理最佳实践
本文介绍了大数据与AI一体化架构的演进及其实现方法,重点探讨了Data+AI开发全生命周期的关键步骤。文章分析了大模型开发中的典型挑战,如数据管理混乱、开发效率低下和运维管理困难,并提出了解决方案。同时,详细描述了MaxCompute在构建AI时代数据基础设施中的作用,包括其强大的计算能力、调度能力和易用性特点。此外,还展示了MaxCompute在多模态数据处理中的应用实践以及具体客户案例,最后提供了体验MaxFrame解决方案的方式。
流批一体向量化引擎Flex
本文整理自蚂蚁集团技术专家刘勇在Flink Forward Asia 2024上的分享,聚焦流批一体向量化引擎的背景、架构及未来规划。内容涵盖向量化计算的基础原理(如SIMD指令)、现有技术现状,以及蚂蚁在Flink 1.18中引入的C++开发向量化计算实践。通过Flex引擎(基于Velox构建),实现比原生执行引擎更高的吞吐量和更低的成本。文章还详细介绍了功能性优化、正确性验证、易用性和稳定性建设,并展示了线上作业性能提升的具体数据(平均提升75%,最佳达14倍)。最后展望了未来规划,包括全新数据转换层、与Paimon结合及支持更多算子和SIMD函数。
Apache Spark详解
Apache Spark 是一个开源、分布式计算引擎,专为大规模数据处理设计。它以高速、易用和通用为核心目标。通过内存计算、DAG 执行引擎和惰性求值等特性,大幅提升数据处理效率。其核心组件包括 Spark Core、Spark SQL、Spark Streaming、MLlib 和 GraphX,支持批处理、实时流处理、机器学习和图计算。Spark 提供统一编程模型,支持多语言(Scala/Java/Python/R),并拥有强大的 Catalyst 优化器和类型安全的 Dataset API,广泛应用于大数据分析和处理场景。
|
3月前
|
《深度探秘:Java构建Spark MLlib与TensorFlow Serving混合推理流水线》
本文探讨了如何结合Apache Spark MLlib、TensorFlow Serving和Java构建混合推理流水线。Spark MLlib利用分布式计算高效处理大规模数据,完成模型训练;TensorFlow Serving专注于模型部署,提供稳定高效的推理服务;Java则以其稳健性协调两者,实现高性能与扩展性。文章分析了环境搭建、模型训练与集成、输入输出处理及性能优化等关键环节,并讨论了兼容性与性能瓶颈等挑战。这一架构在医疗、金融等领域具有广阔应用前景,展现了强大的技术潜力。
大数据& AI 产品月刊【2025年5月】
大数据& AI 产品技术月刊【2025年5月】,涵盖5月技术速递、产品和功能发布、市场和客户应用实践等内容,帮助您快速了解阿里云大数据& AI 方面最新动态。
|
3月前
|
【LeetCode 热题100】BFS/DFS 实战:岛屿数量 & 腐烂的橘子(力扣200 / 994 )(Go语言版)
本文讲解了两道经典的图论问题:**岛屿数量(LeetCode 200)** 和 **腐烂的橘子(LeetCode 994)**,分别通过 DFS/BFS 实现。在“岛屿数量”中,利用深度或广度优先搜索遍历二维网格,标记连通陆地并计数;“腐烂的橘子”则采用多源 BFS,模拟腐烂传播过程,计算最短时间。两者均需掌握访问标记技巧,是学习网格搜索算法的绝佳实践。
MCP、MaxFrame与大数据技术全景解析
本文介绍了 MCP 协议、MaxFrame 分布式计算框架以及大数据基础设施建设的相关内容。MCP(Model Context Protocol)是一种开源协议,旨在解决 AI 大模型与外部数据源及工具的集成问题,被比喻为大模型的“USB 接口”,通过统一交互方式降低开发复杂度。其核心架构包括 Client、Server、Tool 和 Schema 四个关键概念,并在百炼平台中得到实践应用。MaxFrame 是基于 Python 的高性能分布式计算引擎,支持多模态数据处理与 AI 集成,结合 MaxCompute 提供端到端的数据处理能力。
|
4月前
| |
来自: 弹性计算
阿里云服务器内存型实例怎么选?r7/r8y/r8i实例性能、适用场景与选择参考
在选择阿里云服务器时,针对内存密集型应用和数据库应用,内存型实例因其高内存配比和优化的性能表现,成为了众多用户的热门选择。在目前阿里云的活动中,内存型实例主要有内存型r7、内存型r8y和内存型r8i实例可选。为了帮助大家更好地了解这三款实例的区别,本文将详细对比它们的实例规格、CPU、内存、计算、存储、网络等方面的性能,并附上活动价格对比,以便用户能够全面了解它们之间的不同,以供选择和参考。
免费试用