131_推理加速:ONNX与TensorRT深度技术解析与LLM模型转换优化实践
在大语言模型(LLM)时代,高效的推理加速已成为部署高性能AI应用的关键挑战。随着模型规模的不断扩大(从BERT的数亿参数到GPT-4的数千亿参数),推理过程的计算成本和延迟问题日益突出。ONNX(开放神经网络交换格式)和TensorRT作为业界领先的推理优化框架,为LLM的高效部署提供了强大的技术支持。本文将深入探讨LLM推理加速的核心原理,详细讲解PyTorch模型转换为ONNX和TensorRT的完整流程,并结合2025年最新优化技术,提供可落地的代码实现与性能调优方案。
134_边缘推理:TensorFlow Lite - 优化移动端LLM部署技术详解与实战指南
在人工智能与移动计算深度融合的今天,将大语言模型(LLM)部署到移动端和边缘设备已成为行业发展的重要趋势。TensorFlow Lite作为专为移动和嵌入式设备优化的轻量级推理框架,为开发者提供了将复杂AI模型转换为高效、低功耗边缘计算解决方案的强大工具。随着移动设备硬件性能的不断提升和模型压缩技术的快速发展,2025年的移动端LLM部署已不再是遥远的愿景,而是正在成为现实的技术实践。
122_集群管理:Slurm配置 - 优化大规模训练调度
在2025年,大规模语言模型(LLM)的训练已经进入到超大规模时代,模型参数量达到数千亿甚至万亿级别,训练过程需要动用数百甚至数千个GPU/TPU。在这种情况下,高效的集群管理系统成为训练成功的关键基础设施。Slurm(Simple Linux Utility for Resource Management)作为目前最流行的开源作业调度系统,广泛应用于科研机构和大型科技公司的超级计算集群中。
120_检查点管理:故障恢复 - 实现分布式保存机制
在大型语言模型(LLM)的训练过程中,检查点管理是确保训练稳定性和可靠性的关键环节。2025年,随着模型规模的不断扩大,从百亿参数到千亿参数,训练时间通常长达数周甚至数月,硬件故障、软件错误或网络中断等问题随时可能发生。有效的检查点管理机制不仅能够在故障发生时快速恢复训练,还能优化存储使用、提高训练效率,并支持实验管理和模型版本控制。
130_知识蒸馏技术:温度参数与损失函数设计 - 教师-学生模型的优化策略与PyTorch实现
随着大型语言模型(LLM)的规模不断增长,部署这些模型面临着巨大的计算和资源挑战。以DeepSeek-R1为例,其671B参数的规模即使经过INT4量化后,仍需要至少6张高端GPU才能运行,这对于大多数中小型企业和研究机构来说成本过高。知识蒸馏作为一种有效的模型压缩技术,通过将大型教师模型的知识迁移到小型学生模型中,在显著降低模型复杂度的同时保留核心性能,成为解决这一问题的关键技术之一。
17_文本预处理全流程:分词到lemmatization
在自然语言处理(NLP)领域,文本预处理是整个流程中最基础、也最关键的一步。2025年的研究表明,高质量的文本预处理可以将后续模型性能提升30%-45%,这一数据较2023年的25%有了显著增长。预处理的核心目标是将原始文本转换为适合机器学习模型处理的结构化形式,同时保留关键语义信息。
48_动态架构模型:NAS在LLM中的应用
大型语言模型(LLM)在自然语言处理领域的突破性进展,很大程度上归功于其庞大的参数量和复杂的网络架构。然而,随着模型规模的不断增长,计算资源消耗、推理延迟和部署成本等问题日益凸显。如何在保持模型性能的同时,优化模型架构以提高效率,成为2025年大模型研究的核心方向之一。神经架构搜索(Neural Architecture Search, NAS)作为一种自动化的网络设计方法,正在为这一挑战提供创新性解决方案。本文将深入探讨NAS技术如何应用于LLM的架构优化,特别是在层数与维度调整方面的最新进展,并通过代码实现展示简单的NAS实验。
45_混合专家模型:MoE架构详解
在大语言模型的发展历程中,参数规模的扩张一直被视为提升性能的主要途径。然而,随着模型参数达到数百亿甚至数千亿级别,传统的密集型模型架构面临着计算资源、训练效率和推理速度等诸多挑战。2025年,混合专家模型(Mixture of Experts,MoE)已成为突破这些限制的关键技术路径。