200行python代码实现从Bigram模型到LLM
本文从零基础出发,逐步实现了一个类似GPT的Transformer模型。首先通过Bigram模型生成诗词,接着加入Positional Encoding实现位置信息编码,再引入Single Head Self-Attention机制计算token间的关系,并扩展到Multi-Head Self-Attention以增强表现力。随后添加FeedForward、Block结构、残差连接(Residual Connection)、投影(Projection)、层归一化(Layer Normalization)及Dropout等组件,最终调整超参数完成一个6层、6头、384维度的“0.0155B”模型
从零开始200行python代码实现LLM
本文从零开始用Python实现了一个极简但完整的大语言模型,帮助读者理解LLM的工作原理。首先通过传统方法构建了一个诗词生成器,利用字符间的概率关系递归生成文本。接着引入PyTorch框架,逐步重构代码,实现了一个真正的Bigram模型。文中详细解释了词汇表(tokenizer)、张量(Tensor)、反向传播、梯度下降等关键概念,并展示了如何用Embedding层和线性层搭建模型。最终实现了babyGPT_v1.py,一个能生成类似诗词的简单语言模型。下一篇文章将在此基础上实现自注意力机制和完整的GPT模型。
BayesFlow:基于神经网络的摊销贝叶斯推断框架
BayesFlow 是一个基于 Python 的开源框架,利用摊销神经网络加速贝叶斯推断,解决传统方法计算复杂度高的问题。它通过训练神经网络学习从数据到参数的映射,实现毫秒级实时推断。核心组件包括摘要网络、后验网络和似然网络,支持摊销后验估计、模型比较及错误检测等功能。适用于流行病学、神经科学、地震学等领域,为仿真驱动的科研与工程提供高效解决方案。其模块化设计兼顾易用性与灵活性,推动贝叶斯推断从理论走向实践。
《 PyTorch 2.3革新:torch.compile自动生成CUDA优化内核全解》
torch.compile是PyTorch 2.3推出的革命性功能,通过即时编译(JIT)技术优化模型运行速度。它借助TorchDynamo提取计算图,并通过TorchInductor生成高度优化的CUDA内核,充分发挥GPU并行计算能力。支持默认、reduce-overhead和max-autotune三种模式,分别适用于不同性能需求场景。尽管在复杂模型或动态计算图中可能面临挑战,但通过调整参数或结合其他优化技术,仍可显著提升性能。这一工具极大简化了CUDA代码优化流程,为深度学习开发提供了强大支持。
AI界的"翻译官":ONNX如何让各框架模型和谐共处
还在为不同框架间的模型转换头疼?ONNX让你在PyTorch训练的模型可以无缝在TensorFlow部署,甚至能让模型在手机上飞速运行。本文带你了解这个AI领域的'瑞士军刀',轻松实现跨平台高性能模型部署。
《视频秒变艺术大片:Python+AI风格迁移的神级操作》
Python在AI艺术风格迁移视频制作中至关重要,其丰富的库资源和强大的生态系统为深度学习提供了支持。核心原理基于卷积神经网络(CNN),通过提取内容图像与风格图像的特征并融合,生成新风格图像。视频制作需对每帧进行处理,涉及复杂计算,Python的高效工具如TensorFlow和PyTorch助力模型构建与训练。使用预训练模型(如VGG19)提取特征,通过Gram矩阵捕捉风格信息。优化策略包括多线程处理、分块处理以提升效率,同时确保视频连贯性。这一技术实现艺术与技术的深度融合,赋予视频全新视觉体验。
《Python+AI如何颠覆传统文书审查模式》
在法律领域,法律文书审查传统上依赖人工,耗时且易出错。Python结合AI技术为这一问题提供了高效解决方案。通过自然语言处理(NLP),计算机可精准分析法律文书,包括分词、句法分析、命名实体识别(NER)和文本分类等步骤。这些技术能快速提取关键信息,理解复杂语义,并结合深度学习模型如Transformer提升准确性。实际应用中,高质量数据与专业标注至关重要,同时借助TensorFlow或PyTorch优化模型训练。AI辅助审查不仅提高效率,还助力律师、法官和企业法务更好地应对挑战,推动司法公正与智能化发展。
昇腾910-PyTorch 实现 Vggnet图像分类
本实验基于昇腾平台,使用PyTorch实现Vggnet模型对CIFAR10数据集进行图像分类。内容涵盖Vggnet模型创新点(小卷积核堆叠、深层网络结构)、网络架构剖析及代码实战分析。通过定义`blockVGG`函数构建卷积块,实现VGG11网络,并结合数据预处理、训练与测试模块完成分类任务。实验展示了深度学习中增加网络深度对性能提升的重要性。