算法框架/工具

首页 标签 算法框架/工具
# 算法框架/工具 #
关注
10795内容
|
6月前
|
Windows下CUDA+pytorch安装
以下是关于在Windows下安装CUDA和PyTorch的简要介绍及参考链接:
AIMv2:苹果开源多模态视觉模型,自回归预训练革新图像理解
AIMv2 是苹果公司开源的多模态自回归预训练视觉模型,通过图像和文本的深度融合提升视觉模型的性能,适用于多种视觉和多模态任务。
|
6月前
| |
PyTorch内存优化的10种策略总结:在有限资源环境下高效训练模型
在大规模深度学习模型训练中,GPU内存容量常成为瓶颈,特别是在训练大型语言模型和视觉Transformer时。本文系统介绍了多种内存优化策略,包括混合精度训练、低精度训练(如BF16)、梯度检查点、梯度累积、张量分片与分布式训练、
为什么要用TorchEasyRec processor?
TorchEasyRec处理器支持Intel和AMD的CPU服务器及GPU推理,兼容普通PyTorch模型。它具备TorchEasyRec的特征工程(FG)和模型推理功能,提供更快的推理性能,降低成本。通过Item Feature Cache特性,它能够缓存特征以减少网络传输,进一步提升特征工程与推理的速度。
从词袋到Transformer:自然语言处理的演进与实战
自然语言处理(NLP)是人工智能的重要分支,从早期的规则系统发展到如今的深度学习模型,经历了词袋模型、词嵌入、RNN/LSTM/GRU,再到革命性的Transformer架构。本文通过代码和案例详细介绍了这些技术的演进,并展示了如何从简单的词袋模型过渡到强大的Transformer,涵盖文本分类等实战应用,帮助读者深入理解NLP的核心技术和未来发展潜力。
DeepSeek进阶开发与应用1:DeepSeek框架概述与基础应用
DeepSeek是一个高效、灵活的深度学习框架,旨在简化模型的构建、训练和评估。其核心特点包括模块化设计、自动微分、多后端支持及易于扩展。本文通过手写数字识别的CNN模型实例,展示了DeepSeek的安装、数据准备、模型构建、编译、训练与评估过程,最终模型在测试集上达到了98%以上的准确率。
从零开始:如何训练自己的AI模型
### 从零开始:如何训练自己的AI模型 训练AI模型如同培养新生儿,需耐心与技巧。首先明确目标(如图像识别、自然语言处理),选择框架(TensorFlow、PyTorch)。接着收集并预处理数据,确保多样性和准确性。然后设计模型结构,如卷积神经网络(CNN),并通过代码实现训练。训练后评估模型性能,调优以避免过拟合。最后部署模型至实际应用。通过猫狗分类器案例,掌握关键步骤和常见问题。训练AI模型是不断迭代优化的过程,实践才能真正掌握精髓。
|
7月前
| |
用PyTorch从零构建 DeepSeek R1:模型架构和分步训练详解
本文详细介绍了DeepSeek R1模型的构建过程,涵盖从基础模型选型到多阶段训练流程,再到关键技术如强化学习、拒绝采样和知识蒸馏的应用。
BioMedGPT-R1:生物医药ChatGPT诞生!蒸馏DeepSeek R1突破人类专家水平,分子解析+靶点预测一键搞定
BioMedGPT-R1 是清华大学与水木分子联合开发的多模态生物医药大模型,支持跨模态问答、药物分子理解与靶点挖掘,性能显著提升。
免费试用