数据处理

首页 标签 数据处理
# 数据处理 #
关注
17415内容
|
24天前
|
解锁Python列表推导式:优雅与效率的完美融合
解锁Python列表推导式:优雅与效率的完美融合
|
24天前
|
《从踩坑到精通:边缘网关在物联网场景下的实践与优化指南》
本文以智慧园区物联网项目为背景,聚焦非电商/金融场景下边缘网关的开发实践与优化。针对传统中心化网关存在的延迟高、单点故障、吞吐量不足等问题,团队重构架构引入边缘计算,部署分布式网关集群。文章详细阐述从硬件选型(工业级处理器设备)到软件分层设计(驱动适配、数据处理、协同控制层)的全流程,重点解析协议适配难题(私有协议反向工程、串口通信纠错)、数据预处理策略(过滤、聚合、脱敏)、高可用设计(硬件冗余、故障转移、本地缓存)及性能优化(动态线程池、对象池技术)。
|
25天前
| |
NumPy广播:12个技巧替代循环,让数组计算快40倍
摆脱Python数据处理中的低效for循环!掌握NumPy广播机制,实现向量化计算,让代码更简洁、运行更快。从数据标准化到距离矩阵、独热编码,12个实战案例教你用形状思维替代循环思维,显著降低CPU负载,提升程序性能。
116_大规模预训练数据管理与质量控制机制
在2025年的大语言模型(LLM)训练领域,数据管理和质量控制已成为决定模型性能上限的关键因素。随着模型规模的不断扩大(从早期的数十亿参数到如今的数千亿参数),对训练数据的数量、多样性和质量要求也呈指数级增长。一个高效的数据管理系统和严格的质量控制机制,不仅能够确保训练过程的稳定性,还能显著提升最终模型的性能和安全性。
110_微调数据集标注:众包与自动化
在大语言模型(LLM)的微调过程中,高质量的标注数据是模型性能提升的关键因素。随着模型规模的不断扩大和应用场景的日益多样化,如何高效、准确地创建大规模标注数据集成为了研究者和工程师面临的重要挑战。众包与自动化标注技术的结合,为解决这一挑战提供了可行的方案。
63_模型定制:领域微调技术
在2025年的AI生态系统中,通用大语言模型(LLM)如ChatGPT、LLaMA 3、Claude 3等已经展现出惊人的通用能力。然而,当面对特定行业或场景的专业需求时,通用模型往往表现出局限性:术语理解不准确、领域知识不足、任务适配性差等问题。这正是模型定制与微调技术应运而生的背景。
44_Falcon与Phi:高效开源模型
在大语言模型的发展历程中,长期存在一种主流观点:模型参数量越大,性能越好。然而,随着计算资源消耗和能源成本的持续攀升,这种"越大越好"的发展路径面临着严峻挑战。2025年,业界开始重新审视AI模型的发展方向,"效率"成为新的关键词。在这一背景下,阿联酋阿布扎比技术创新研究院(TII)的Falcon系列和微软的Phi系列模型以其"小而强"的特点脱颖而出,成为高效开源模型的典范。
71_数据版本控制:Git与DVC在LLM开发中的最佳实践
在2025年的大模型(LLM)开发实践中,数据和模型的版本控制已成为确保项目可重复性和团队协作效率的关键环节。与传统软件开发不同,LLM项目面临着独特的数据版本控制挑战:
98_数据增强:提升LLM微调效果的关键技术
在大语言模型(LLM)的微调过程中,数据质量与数量往往是决定最终性能的关键因素。然而,获取高质量、多样化且标注准确的训练数据却常常面临诸多挑战:数据标注成本高昂、领域特定数据稀缺、数据分布不均等问题都会直接影响微调效果。在这种背景下,数据增强技术作为一种能够有效扩充训练数据并提升其多样性的方法,正发挥着越来越重要的作用。
36_T5与编码器-解码器架构
T5(Text-to-Text Transfer Transformer)是由Google Research于2019年提出的一种革命性的预训练语言模型。它的核心创新在于提出了一种统一的框架,将所有自然语言处理(NLP)任务都转换为文本到文本的格式,即输入和输出都是文本序列。
免费试用