AI 驱动传统 Java 应用集成的关键技术与实战应用指南
本文探讨了如何将AI技术与传统Java应用集成,助力企业实现数字化转型。内容涵盖DJL、Deeplearning4j等主流AI框架选择,技术融合方案,模型部署策略,以及智能客服、财务审核、设备诊断等实战应用案例,全面解析Java系统如何通过AI实现智能化升级与效率提升。
大模型开发从入门到部署
本内容系统讲解大语言模型技术,涵盖BERT、GPT等主流架构,深入Transformer原理与自注意力机制,结合PyTorch实战,详解张量操作、自动求导与模型训练,并介绍RAG、Agent等典型应用场景,助你掌握AI核心技术。
Python音频处理-频谱图实现
本教程介绍如何使用 PyTorch 提取音频特征,重点实现频谱图的生成。内容包括使用 torchaudio 进行频谱提取、频谱图维度解析、手动实现频谱计算步骤,并对两种方法的结果进行对比分析,展示其差异与实现细节。
GPT为定制AI应用工程师转型第一周学习计划
本计划帮助开发者快速入门AI领域,首周涵盖AI基础理论、Python编程及PyTorch实战。前两天学习机器学习、深度学习与Transformer核心概念,掌握LLM工作原理。第三至四天快速掌握Python语法与Jupyter使用,完成基础编程任务。第五至七天学习PyTorch,动手训练MNIST手写识别模型,理解Tensor操作与神经网络构建。
AI Agent多模态融合策略研究与实证应用
本文从多模态信息融合的理论基础出发,构建了一个结合图像与文本的AI Agent模型,并通过PyTorch代码实现了完整的图文问答流程。未来,多模态智能体将在医疗、自动驾驶、虚拟助手等领域展现巨大潜力。模型优化的核心是提升不同模态的协同理解与推理能力,从而打造真正“理解世界”的AI Agent。