机器学习资源

简介: 机器学习资源

                           

machine-learning-course ==========================

预备

  • 学习思路(每件事情都要经过以下三步)
  • 第一步:去google、百度、bing进行搜索
  • 第二步:搜索不到,问同学
  • 第三步:还不能解决,问老师
  • python安装
  • ipython notebook安装    
  • 科学计算包安装使用(numpy, scipy, matplotlib等)    
  • 数据处理包(pandas)    
  • git安装使用    
  • python学习    
  • 云主机    
  • ubuntu安装学习    
  • [ubuntu安装]
  • [linux命令]
  • 情感分析(sentiment analysis, opinion mining, etc.)    
  • 网络爬虫(crawler)    
  • 数据产品(Data Product)    
  • 关键词提取    
  • 网站框架学习    
  • 数据科学课程    
  • 机器学习教程    
  • 信息检索    
  • 特征选择    
  • 数学    
  • kaggle    
  • 图数据库(Neo4j)    
  • Deep Learning    
  • 自然语言处理    
  • 可视化(vision)    
  • 英文写作措辞    
  • 主题分析    
  • Deep Learning    
  • 推荐系统    
  • 教育数据挖掘和学习分析    
  • 博客    

准备

第一单元 回归(Regression)

第二单元 分类(Classification)

  • Logistic Regression    
  • 神经网络    


相关文章
|
机器学习/深度学习 开发工具 云计算
Azure - 机器学习:创建机器学习所需资源,配置工作区
Azure - 机器学习:创建机器学习所需资源,配置工作区
89 0
|
8月前
|
机器学习/深度学习 SQL 存储
机器学习PAI常见问题之资源不足如何解决
PAI(平台为智能,Platform for Artificial Intelligence)是阿里云提供的一个全面的人工智能开发平台,旨在为开发者提供机器学习、深度学习等人工智能技术的模型训练、优化和部署服务。以下是PAI平台使用中的一些常见问题及其答案汇总,帮助用户解决在使用过程中遇到的问题。
|
5月前
|
机器学习/深度学习 人工智能 前端开发
【机器学习】FlyFlowerSong【人工智能】资源指南
FlyFlowerSong是一个创新的音乐合成与处理项目,它利用先进的机器学习算法,为用户提供了一个简单而有趣的音乐创作平台。作为人工智能领域的技术自媒体创作者,我整理了关于FlyFlowerSong的完整教程、论文复现指南以及demo项目源代码,旨在帮助开发者、音乐爱好者以及AI研究者深入探索这一领域。
58 1
|
6月前
|
机器学习/深度学习 人工智能 运维
人工智能平台PAI使用问题之一直显示"正在等待在云端的gateway资源",该如何处理
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。
|
6月前
|
机器学习/深度学习 人工智能 分布式计算
人工智能平台PAI使用问题之部署时是否可以自定义资源的区域
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。
|
7月前
|
机器学习/深度学习 算法 TensorFlow
算法金 | 只需十四步:从零开始掌握Python机器学习(附资源)
```markdown ## 摘要 全网同名「算法金」的作者分享了一篇针对Python机器学习入门的教程。教程旨在帮助零基础学习者掌握Python和机器学习,利用免费资源成为实践者。内容分为基础篇和进阶篇,覆盖Python基础、机器学习概念、数据预处理、科学计算库(如NumPy、Pandas和Matplotlib)以及深度学习(TensorFlow、Keras)。此外,还包括进阶算法如SVM、随机森林和神经网络。教程还强调了实践和理解最新趋势的重要性。
85 0
算法金 | 只需十四步:从零开始掌握Python机器学习(附资源)
|
7月前
|
机器学习/深度学习 分布式计算 监控
在大数据模型训练中,关键步骤包括数据收集与清洗、特征工程、数据划分;准备分布式计算资源
【6月更文挑战第28天】在大数据模型训练中,关键步骤包括数据收集与清洗、特征工程、数据划分;准备分布式计算资源,选择并配置模型如深度学习架构;通过初始化、训练、验证进行模型优化;监控性能并管理资源;最后保存模型并部署为服务。过程中要兼顾数据隐私、安全及法规遵守,利用先进技术提升效率。
128 0
|
7月前
|
机器学习/深度学习 数据采集 人工智能
【机器学习】CLIP模型在有限计算资源下的性能探究:从数据、架构到训练策略
【机器学习】CLIP模型在有限计算资源下的性能探究:从数据、架构到训练策略
403 0
|
机器学习/深度学习 数据可视化 数据挖掘
资源分享 | 从加减乘除到机器学习
资源分享 | 从加减乘除到机器学习
171 0
|
机器学习/深度学习 算法
掌握机器学习算法的三重门,附资源推荐!
掌握机器学习算法的三重门,附资源推荐!
掌握机器学习算法的三重门,附资源推荐!