Azure - 机器学习:创建机器学习所需资源,配置工作区

简介: Azure - 机器学习:创建机器学习所需资源,配置工作区

本文中你可以创建使用 Azure 机器学习所需的资源,包含工作区和计算实例。


一、Azure机器学习工作区与计算实例简要介绍

工作区

若要使用 Azure 机器学习,你首先需要一个工作区。 工作区是用于查看和管理所创建的全部项目和资源的中心位置。

计算实例

计算实例是预配置的云计算资源,可用于训练、自动执行、管理和跟踪机器学习模型。 开始使用 Azure 机器学习 SDK 和 CLI 的最快方法便是利用计算示例。 本教程的其余部分将使用它来运行 Jupyter 笔记本和 Python 脚本。


二、创建工作区

工作区是机器学习活动的顶级资源,为使用 Azure 机器学习时创建的所有项目提供一个集中的查看和管理位置。

1. 登录到 Azure 机器学习工作室

访问:https://ml.azure.com/

2. 选择“创建工作区”

3. 提供以下信息来配置新工作区:

工作区名称 输入用于标识工作区的唯一名称。 名称在整个资源组中必须唯一。 使用易于记忆且区别于其他人所创建工作区的名称。 工作区名称不区分大小写。 订阅 选择要使用的 Azure 订阅。 资源组 使用订阅中的现有资源组,或者输入一个名称以创建新的资源组。 资源组保存 Azure 解决方案的相关资源。 需要“参与者”或“所有者”角色才能使用现有资源组。 有关访问权限的详细信息,请参阅管理对 Azure 机器学习工作区的访问权限。 区域 选择离你的用户和数据资源最近的 Azure 区域来创建工作区。

4. 选择“创建”以创建工作区

这将创建一个工作区以及所有必需的资源。


三、创建计算实例

如果还没有计算实例,现在请创建一个:

  1. 在左侧导航中,选择“笔记本”。
  2. 在页面中间,选择“创建计算”。 仅当工作区中还没有计算实例时,才会显示此选项。

3.提供名称。 保留第一页上的所有默认值。

4. 保留页面其余部分的默认值。

5. 选择“创建”。


四、工作室实战

4.1 工作室快速导览

工作室是 Azure 机器学习的 Web 门户。 此门户将无代码和代码优先体验结合起来,打造包容的数据科学平台。

查看左侧导航栏上的工作室部分:

工作室的“创作”部分包含多种创建机器学习模型入门的方法。 方法:

  1. 通过“笔记本”部分,可以创建 Jupyter 笔记本、复制示例笔记本以及运行笔记本和 Python 脚本。
  2. 通过“自动化 ML”步骤,可以创建机器学习模型,而无需编写代码。
  3. 通过“设计器”,可以通过拖放方式使用预生成的组件来生成模型。
  4. 工作室的“资产”部分可帮助你跟踪在运行作业时创建的资产。 如果你有新的工作区,则这些部分中还没有任何内容。

通过工作室的“管理”部分,可以创建和管理链接到工作区的计算和外部服务。 还可以在该部分创建和管理“数据标签”项目。

4.2 从示例笔记本中学习

使用工作室中提供的示例笔记本可帮助你了解如何训练和部署模型。 许多其他文章和教程中对此都有引用。

  1. 在左侧导航中,选择“笔记本”。
  2. 在顶部,选择“示例”。
  3. 将 SDK v2 文件夹中的笔记本用于显示 SDK 当前版本 v2 的示例。
  4. 这些笔记本为只读,而且定期更新。
  5. 打开笔记本时,选择顶部的“克隆此笔记本”按钮,将笔记本的副本和所有关联文件都添加到你自己的文件中。 “文件”部分中即会创建一个包含该笔记本的新文件夹。

4.3 创建新的 Notebook

从“示例”克隆笔记本时,文件中会添加一个副本,你可以开始运行或修改该副本。 许多教程都将镜像这些示例笔记本。

但也可以创建新的空笔记本,然后将教程中的代码复制/粘贴到笔记本中。 为此,请执行以下操作:

  1. 仍然在“笔记本”部分中,选择“文件”以返回到你的文件,
  2. 选择 + 以添加文件。
  3. 选择“创建新文件”。

4.4 停止计算实例

如果不打算现在使用它,请停止计算实例:

  1. 在工作室的左侧,选择“计算”。
  2. 在顶部选项卡中,选择“计算实例”
  3. 在列表中选择该计算实例。
  4. 在顶部工具栏中,选择“停止”。

4.5 删除所有资源

如果你不打算使用已创建的任何资源,请删除它们,以免产生任何费用:

  1. 在 Azure 门户中,选择最左侧的“资源组” 。
  2. 从列表中选择你创建的资源组。
  3. 选择“删除资源组”。
  4. 输入资源组名称。 然后选择“删除”。

4.6 工作区管理

目录
相关文章
|
6月前
|
机器学习/深度学习 存储 Linux
【机器学习 Azure Machine Learning】使用VS Code登录到Linux VM上 (Remote-SSH), 及可直接通过VS Code编辑VM中的文件
【机器学习 Azure Machine Learning】使用VS Code登录到Linux VM上 (Remote-SSH), 及可直接通过VS Code编辑VM中的文件
|
6月前
|
机器学习/深度学习 Ubuntu Linux
【机器学习 Azure Machine Learning】使用Aure虚拟机搭建Jupyter notebook环境,为Machine Learning做准备(Ubuntu 18.04,Linux)
【机器学习 Azure Machine Learning】使用Aure虚拟机搭建Jupyter notebook环境,为Machine Learning做准备(Ubuntu 18.04,Linux)
|
6月前
|
机器学习/深度学习 人工智能 前端开发
【机器学习】FlyFlowerSong【人工智能】资源指南
FlyFlowerSong是一个创新的音乐合成与处理项目,它利用先进的机器学习算法,为用户提供了一个简单而有趣的音乐创作平台。作为人工智能领域的技术自媒体创作者,我整理了关于FlyFlowerSong的完整教程、论文复现指南以及demo项目源代码,旨在帮助开发者、音乐爱好者以及AI研究者深入探索这一领域。
66 1
|
6月前
|
UED 存储 数据管理
深度解析 Uno Platform 离线状态处理技巧:从网络检测到本地存储同步,全方位提升跨平台应用在无网环境下的用户体验与数据管理策略
【8月更文挑战第31天】处理离线状态下的用户体验是现代应用开发的关键。本文通过在线笔记应用案例,介绍如何使用 Uno Platform 优雅地应对离线状态。首先,利用 `NetworkInformation` 类检测网络状态;其次,使用 SQLite 实现离线存储;然后,在网络恢复时同步数据;最后,通过 UI 反馈提升用户体验。
148 0
|
7月前
|
机器学习/深度学习 人工智能 运维
人工智能平台PAI使用问题之一直显示"正在等待在云端的gateway资源",该如何处理
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。
|
6月前
|
SQL 机器学习/深度学习 开发工具
【机器学习 Azure Machine Learning】Azure Machine Learning 访问SQL Server 无法写入问题 (使用微软Python AML Core SDK)
【机器学习 Azure Machine Learning】Azure Machine Learning 访问SQL Server 无法写入问题 (使用微软Python AML Core SDK)
|
8月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能平台PAI产品使用合集之如何配置cluster系统自动生成分布式参数
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。
|
8月前
|
机器学习/深度学习 人工智能 Java
人工智能平台PAI产品使用合集之如何配置工作空间存储路径
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。
|
7月前
|
机器学习/深度学习 人工智能 缓存
人工智能平台PAI使用问题之如何配置学习任务
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。
|
7月前
|
机器学习/深度学习 人工智能 分布式计算
人工智能平台PAI使用问题之部署时是否可以自定义资源的区域
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。

热门文章

最新文章