多元分类预测 | Matlab 粒子群优化深度置信网络(PSO-DBN)分类预测

简介: 多元分类预测 | Matlab 粒子群优化深度置信网络(PSO-DBN)分类预测

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

❤️ 内容介绍

在当今大数据时代,数据分类成为了许多领域中的一个重要任务。数据分类是指根据给定的特征,将数据分为不同的类别或标签。这一任务在机器学习和人工智能领域中具有重要意义,因为它可以帮助我们理解数据的特征和模式,并为决策提供支持。

深度置信网络(DBN)是一种用于无监督学习的神经网络模型。它由多个堆叠的限制玻尔兹曼机组成,每个机器都通过反向传播算法进行训练。DBN可以通过学习数据的高阶特征来实现数据分类,并且在许多任务中取得了优秀的性能。

然而,DBN的训练过程通常是一个复杂且耗时的过程。为了改善DBN的性能,研究者们提出了许多优化算法。其中,粒子群算法(PSO)是一种基于群体智能的优化算法,它通过模拟鸟群觅食的行为来寻找最优解。PSO算法具有全局搜索能力和易于实现的特点,因此被广泛应用于解决各种优化问题。

为了进一步提高DBN的分类性能,研究者们将PSO算法与DBN相结合,提出了PSO-DBN模型。PSO-DBN模型通过使用PSO算法来优化DBN的权重和偏置,从而提高了DBN的分类准确性和泛化能力。在实验中,PSO-DBN模型在多个数据集上取得了比传统DBN更好的分类结果。

PSO-DBN模型的核心思想是通过粒子群算法来搜索DBN的最优解。在PSO-DBN模型中,每个粒子代表了一个DBN的权重和偏置的解。粒子根据自身的历史最优解和全局最优解来更新自己的位置和速度。通过迭代更新,粒子逐渐收敛到最优解,从而找到了DBN的最优权重和偏置。

PSO-DBN模型的优势在于它能够充分利用PSO算法的全局搜索能力和DBN的特征学习能力。PSO算法通过搜索整个解空间来找到最优解,而DBN通过学习数据的高阶特征来实现数据分类。通过将这两种能力结合起来,PSO-DBN模型能够在数据分类任务中取得更好的性能。

总结起来,基于粒子群算法优化深度置信网络PSO-DBN模型是一种有效的数据分类方法。它能够通过结合PSO算法的全局搜索能力和DBN的特征学习能力,实现对数据的准确分类。未来,我们可以进一步探索和改进PSO-DBN模型,以应对更复杂的数据分类任务,并在实际应用中发挥更大的作用。

🔥核心代码

function [particle, GlobalBest,varargout] =  Initialization(Params,CostFunction,name)nPop = Params.nPop;VarMin = Params.VarMin;VarMax = Params.VarMax;VarSize = Params.VarSize;%% Initializationswitch name        % 粒子群个体    case 'PSO'        empty_particle.Position=[];        empty_particle.Cost=[];        empty_particle.Velocity=[];        empty_particle.Best.Position=[];        empty_particle.Best.Cost=[];        particle=repmat(empty_particle,nPop,1);        GlobalBest.Cost=inf;        for i=1:nPop            % Initialize Position            particle(i).Position=unifrnd(VarMin,VarMax,VarSize);            % Initialize Velocity            particle(i).Velocity=zeros(VarSize);            % 取整             particle(i).Position(2:VarSize(2)) = floor(particle(i).Position(2:VarSize(2)));                % Evaluation            particle(i).Cost=CostFunction(particle(i).Position);            % Update Personal Best            particle(i).Best.Position=particle(i).Position;            particle(i).Best.Cost=particle(i).Cost;            % Update Global Best            if particle(i).Best.Cost<GlobalBest.Cost                GlobalBest=particle(i).Best;            end        end         % 麻雀个体        case 'SSA'                % 捕食者个体占比        PredatorRate = 0.4;        % 警觉者占比        SDRate = 0.45;        empty_particle.Position=[];        empty_particle.Cost=[];        % 捕食者和加入者        PredatorNumber = floor(nPop * PredatorRate);        particle=repmat(empty_particle,nPop ,1);        % 警觉者        SDNumber = floor(nPop * SDRate);        SD = repmat(empty_particle,SDNumber,1);        GlobalBest.Cost=inf;        GlobalWorst.Cost = -inf;        % 初始化        for i = 1:nPop             particle(i).Position = unifrnd(VarMin,VarMax,VarSize);            particle(i).Cost = CostFunction(particle(i).Position);            if GlobalBest.Cost > particle(i).Cost                GlobalBest = particle(i);            end            if GlobalWorst.Cost < particle(i).Cost                GlobalWorst = particle(i);            end        end        % 警觉者初始化        for i = 1:SDNumber            SD(i).Position = unifrnd(VarMin,VarMax,VarSize);            SD(i).Cost = CostFunction(SD(i).Position);           end        % 挑选捕食者和加入者        [~,index] = sort([particle.Cost]);        Predator = particle(index(1:PredatorNumber));        Joiner = particle(index(PredatorNumber+1:end));                             % 其他算法       otherwise        empty_particle.Position=[];        empty_particle.Cost=[];        particle=repmat(empty_particle,nPop,1);        GlobalBest.Cost=inf;        for i=1:nPop            % Initialize Position            particle(i).Position=unifrnd(VarMin,VarMax,VarSize);            % Initialize Velocity            particle(i).Velocity=zeros(VarSize);            % 取整             particle(i).Position(2:VarSize(2)) = floor(particle(i).Position(2:VarSize(2)));                % Evaluation            particle(i).Cost=CostFunction(particle(i).Position);            % Update Global Best            if particle(i).Cost<GlobalBest.Cost                GlobalBest=particle(i);            end        endend     %%  输出switch name    case 'SSA'        varargout{1} = SD;        varargout{2} = GlobalWorst;        varargout{3} = Predator;        varargout{4} = Joiner;    otherwise       % varargout{1:4} = []; endend

❤️ 运行结果

⛄ 参考文献

[1] 夏源.基于VMD和DBN的齿轮箱故障诊断研究[D].西安工业大学[2023-09-01].

[2] 陆文星、戴一茹、李克卿.基于自适应惯性权重优化后的粒子群算法优化误差反向传播神经网络和深度置信网络(DBN-APSOBP)组合模型的短期旅游需求预测研究[J].科技促进发展, 2020(5):9.DOI:CNKI:SUN:KJCJ.0.2020-05-007.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 仿真咨询

1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面

卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

2.图像处理方面

图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

3 路径规划方面

旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

4 无人机应用方面

无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
、无人机安全通信轨迹在线优化

5 无线传感器定位及布局方面

传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

6 信号处理方面

信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

7 电力系统方面

微电网优化、无功优化、配电网重构、储能配置

8 元胞自动机方面

交通流 人群疏散 病毒扩散 晶体生长 火灾扩散

9 雷达方面

卡尔曼滤波跟踪、航迹关联、航迹融合、状态估计




相关文章
|
13天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
146 80
|
1天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
9天前
|
算法
基于PSO粒子群优化的配电网可靠性指标matlab仿真
本程序基于PSO粒子群优化算法,对配电网的可靠性指标(SAIFI、SAIDI、CAIDI、ENS)进行MATLAB仿真优化。通过调整电网结构和设备配置,最小化停电频率和时长,提高供电连续性和稳定性。程序在MATLAB 2022A版本上运行,展示了优化前后指标的变化。PSO算法模拟鸟群行为,每个粒子代表一个潜在解决方案,通过迭代搜索全局最优解,实现配电网的高效优化设计。
|
7天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
9天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
19天前
|
算法
基于Adaboost模型的数据预测和分类matlab仿真
AdaBoost(Adaptive Boosting)是一种由Yoav Freund和Robert Schapire于1995年提出的集成学习方法,旨在通过迭代训练多个弱分类器并赋予分类效果好的弱分类器更高权重,最终构建一个强分类器。该方法通过逐步调整样本权重,使算法更关注前一轮中被误分类的样本,从而逐步优化模型。示例代码在MATLAB 2022A版本中运行,展示了随着弱分类器数量增加,分类错误率的变化及测试数据的分类结果。
|
2月前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
26天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如&quot;How are you&quot;、&quot;I am fine&quot;、&quot;I love you&quot;等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
3天前
|
传感器 算法
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真
本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。
|
13天前
|
机器学习/深度学习 人工智能 算法
基于GRNN广义回归网络和MFCC的语音情绪识别matlab仿真,对比SVM和KNN
该语音情绪识别算法基于MATLAB 2022a开发,可识别如悲伤等情绪,置信度高达0.9559。核心程序含中文注释及操作视频。算法采用MFCC特征提取与GRNN广义回归网络,通过预加重、分帧、加窗、FFT、梅尔滤波器组、对数运算和DCT等步骤处理语音信号,实现高效的情绪分类。