【图像增强】基于 hessian特征和Frangi滤波实现血管图像增强附matlab代码

简介: 【图像增强】基于 hessian特征和Frangi滤波实现血管图像增强附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法  神经网络预测雷达通信 无线传感器

信号处理图像处理路径规划元胞自动机无人机

⛄ 内容介绍

In this paper we extend the Frangi filter[1] to recognize edges and do not enhance them. We give a theoretical framework for optimal scale selection and choice of the free parameters. We discuss discretization details concerning especially the discrete kernel used for building the scale-space and the choice of discrete scales. We present several experiments on phantom data to objectively and quantitatively compare and judge the filters. Experiments on real coronary angiograms enhance the improvement reached by the integration of the edge indicator.

⛄ 部分代码

function blobness = blobness3D(I, sigmas, spacing, tau, whiteondark)

% calculates blobness probability map (local sphericity) of a 3D input

% image

%

% blobness = blobness3D(V, sigmas, spacing, tau, whiteondark)

%

% inputs,

%   I : 3D image

%   sigmas : vector of scales on which the vesselness is computed

%   spacing : input image spacing resolution - during hessian matrix

%       computation, the gaussian filter kernel size in each dimension can

%       be adjusted to account for different image spacing for different

%       dimensions

%   tau : (between 0.5 and 1) : parameter that controls response uniformity

%       - lower tau -> more intense output response            

%   whiteondark: (true/false) : are vessels (tubular structures) bright on

%       dark background or dark on bright (default for 3D is true)

%

% outputs,

%   blobness: maximum blobness response over scales sigmas

%

% example:

%   B = blobness3D(I, 1:5, [1;1;1], 1, true);

%

% Function was written by T. Jerman, University of Ljubljana (October 2014)

% Based on code by D. Kroon, University of Twente (May 2009)


verbose = 1;


if nargin<5

   whiteondark = true; % default

end


I(~isfinite(I)) = 0;

I = single(I);


for j = 1:length(sigmas)

   

   if verbose  

       disp(['Current Filter Sigma: ' num2str(sigmas(j)) ]);

   end


   [Lambda1, Lambda2, Lambda3] = volumeEigenvalues(I,sigmas(j),spacing,whiteondark);

   

   % proposed filter

   Lambda3M = Lambda3;

   Lambda3M(Lambda3>=min(Lambda3(:)).*tau) = min(Lambda3(:)).*tau;            

   response = ((Lambda1.^2).*Lambda3M.* 27) ./ ((2*Lambda1+Lambda3M).^3);

   response(abs(Lambda1)>abs(Lambda3M)) = 1;


   response(Lambda1>=0) = 0;

   response(Lambda2>=0) = 0;

   response(Lambda3>=0) = 0;        

   response(~isfinite(response)) = 0;


   %keep max response

   if(j==1)

       blobness = response;

   else        

       blobness = max(blobness,response);

   end

       

   clear response Lambda1 Lambda2 Lambda3 Lambda3M    

   

end


blobness = blobness ./ max(blobness(:));

blobness(blobness < 1e-2) = 0;



function [Lambda1, Lambda2, Lambda3] = volumeEigenvalues(V,sigma,spacing,whiteondark)

% calculates the three eigenvalues for each voxel in a volume


% Calculate 3D hessian

[Hxx, Hyy, Hzz, Hxy, Hxz, Hyz] = Hessian3D(V,sigma,spacing);


% Correct for scaling

c=sigma.^2;

Hxx = c*Hxx; Hxy = c*Hxy;

Hxz = c*Hxz; Hyy = c*Hyy;

Hyz = c*Hyz; Hzz = c*Hzz;


if whiteondark == false

   c=-1;

   Hxx = c*Hxx; Hxy = c*Hxy;

   Hxz = c*Hxz; Hyy = c*Hyy;

   Hyz = c*Hyz; Hzz = c*Hzz;    

end


% reduce computation by computing vesselness only where needed

% S.-F. Yang and C.-H. Cheng, 揊ast computation of Hessian-based

% enhancement filters for medical images,?Comput. Meth. Prog. Bio., vol.

% 116, no. 3, pp. 215?25, 2014.

B1 = - (Hxx + Hyy + Hzz);

B2 = Hxx .* Hyy + Hxx .* Hzz + Hyy .* Hzz - Hxy .* Hxy - Hxz .* Hxz - Hyz .* Hyz;

B3 = Hxx .* Hyz .* Hyz + Hxy .* Hxy .* Hzz + Hxz .* Hyy .* Hxz - Hxx .* Hyy .* Hzz - Hxy .* Hyz .* Hxz - Hxz .* Hxy .* Hyz;


T = ones(size(B1));

T(B1<=0) = 0;

T(B2<=0) = 0;

T(B3<=0) = 0;

T(B1 .* B2 <= B3) = 0;


clear B1 B2 B3;


indeces = find(T==1);


Hxx = Hxx(indeces);

Hyy = Hyy(indeces);

Hzz = Hzz(indeces);

Hxz = Hxz(indeces);

Hyz = Hyz(indeces);

Hxy = Hxy(indeces);


% Calculate eigen values

[Lambda1i,Lambda2i,Lambda3i]=eig3volume(Hxx,Hxy,Hxz,Hyy,Hyz,Hzz);


% Free memory

clear Hxx Hyy Hzz Hxy Hxz Hyz;


Lambda1 = zeros(size(T));

Lambda2 = zeros(size(T));

Lambda3 = zeros(size(T));


Lambda1(indeces) = Lambda1i;

Lambda2(indeces) = Lambda2i;

Lambda3(indeces) = Lambda3i;


% some noise removal

Lambda1(~isfinite(Lambda1)) = 0;

Lambda2(~isfinite(Lambda2)) = 0;

Lambda3(~isfinite(Lambda3)) = 0;


Lambda1(abs(Lambda1) < 1e-4) = 0;

Lambda2(abs(Lambda2) < 1e-4) = 0;

Lambda3(abs(Lambda3) < 1e-4) = 0;



function [Dxx, Dyy, Dzz, Dxy, Dxz, Dyz] = Hessian3D(Volume,Sigma,spacing)

%  This function Hessian3D filters the image with an Gaussian kernel

%  followed by calculation of 2nd order gradients, which aprroximates the

%  2nd order derivatives of the image.

%

% [Dxx, Dyy, Dzz, Dxy, Dxz, Dyz] = Hessian3D(Volume,Sigma,spacing)

%

% inputs,

%   I : The image volume, class preferable double or single

%   Sigma : The sigma of the gaussian kernel used. If sigma is zero

%           no gaussian filtering.

%   spacing : input image spacing

%

% outputs,

%   Dxx, Dyy, Dzz, Dxy, Dxz, Dyz: The 2nd derivatives

%

% Function is written by D.Kroon University of Twente (June 2009)

% defaults

if nargin < 2, Sigma = 1; end


if(Sigma>0)

   %F=imbigaussian(Volume,Sigma,0.5);

   F=imgaussian(Volume,Sigma,spacing);

else

   F=Volume;

end


% Create first and second order diferentiations

Dz=gradient3(F,'z');

Dzz=(gradient3(Dz,'z'));

clear Dz;


Dy=gradient3(F,'y');

Dyy=(gradient3(Dy,'y'));

Dyz=(gradient3(Dy,'z'));

clear Dy;


Dx=gradient3(F,'x');

Dxx=(gradient3(Dx,'x'));

Dxy=(gradient3(Dx,'y'));

Dxz=(gradient3(Dx,'z'));

clear Dx;


function D = gradient3(F,option)

% This function does the same as the default matlab "gradient" function

% but with one direction at the time, less cpu and less memory usage.

%

% Example:

%

% Fx = gradient3(F,'x');


[k,l,m] = size(F);

D  = zeros(size(F),class(F));


switch lower(option)

case 'x'

   % Take forward differences on left and right edges

   D(1,:,:) = (F(2,:,:) - F(1,:,:));

   D(k,:,:) = (F(k,:,:) - F(k-1,:,:));

   % Take centered differences on interior points

   D(2:k-1,:,:) = (F(3:k,:,:)-F(1:k-2,:,:))/2;

case 'y'

   D(:,1,:) = (F(:,2,:) - F(:,1,:));

   D(:,l,:) = (F(:,l,:) - F(:,l-1,:));

   D(:,2:l-1,:) = (F(:,3:l,:)-F(:,1:l-2,:))/2;

case 'z'

   D(:,:,1) = (F(:,:,2) - F(:,:,1));

   D(:,:,m) = (F(:,:,m) - F(:,:,m-1));

   D(:,:,2:m-1) = (F(:,:,3:m)-F(:,:,1:m-2))/2;

otherwise

   disp('Unknown option')

end

       

function I=imgaussian(I,sigma,spacing,siz)

% IMGAUSSIAN filters an 1D, 2D color/greyscale or 3D image with an

% Gaussian filter. This function uses for filtering IMFILTER or if

% compiled the fast  mex code imgaussian.c . Instead of using a

% multidimensional gaussian kernel, it uses the fact that a Gaussian

% filter can be separated in 1D gaussian kernels.

%

% J=IMGAUSSIAN(I,SIGMA,SIZE)

%

% inputs,

%   I: The 1D, 2D greyscale/color, or 3D input image with

%           data type Single or Double

%   SIGMA: The sigma used for the Gaussian kernel

%   SIZE: Kernel size (single value) (default: sigma*6)

%

% outputs,

%   J: The gaussian filtered image

%

% note, compile the code with: mex imgaussian.c -v

%

% example,

%   I = im2double(imread('peppers.png'));

%   figure, imshow(imgaussian(I,10));

%

% Function is written by D.Kroon University of Twente (September 2009)


if(~exist('siz','var')), siz=sigma*6; end


if(sigma>0)


   % Filter each dimension with the 1D Gaussian kernels\

   x=-ceil(siz/spacing(1)/2):ceil(siz/spacing(1)/2);

   H = exp(-(x.^2/(2*(sigma/spacing(1))^2)));

   H = H/sum(H(:));    

   Hx=reshape(H,[length(H) 1 1]);

   

   x=-ceil(siz/spacing(2)/2):ceil(siz/spacing(2)/2);

   H = exp(-(x.^2/(2*(sigma/spacing(2))^2)));

   H = H/sum(H(:));    

   Hy=reshape(H,[1 length(H) 1]);


   x=-ceil(siz/spacing(3)/2):ceil(siz/spacing(3)/2);

   H = exp(-(x.^2/(2*(sigma/spacing(3))^2)));

   H = H/sum(H(:));    

   Hz=reshape(H,[1 1 length(H)]);

   

   I=imfilter(imfilter(imfilter(I,Hx, 'same' ,'replicate'),Hy, 'same' ,'replicate'),Hz, 'same' ,'replicate');

end

⛄ 运行结果

⛄ 参考文献

1. [T. Jerman, F. Pernus, B. Likar, Z. Spiclin, "*Enhancement of Vascular Structures in 3D and 2D Angiographic Images*", IEEE Transactions on Medical Imaging, 35(9), p. 2107-2118 (2016)

2. [T. Jerman, F. Pernus, B. Likar, Z. Spiclin, "*Blob Enhancement and Visualization for Improved Intracranial Aneurysm Detection*", IEEE Transactions on Visualization and Computer Graphics, 22(6), p. 1705-1717 (2016)

3. [T. Jerman, F. Pernus, B. Likar, Z. Spiclin, "*Beyond Frangi: an improved multiscale vesselness filter*", Proc. SPIE 9413, Medical Imaging 2015: Image Processing, 94132A (2015)

❤️ 关注我领取海量matlab电子书和数学建模资料
❤️部分理论引用网络文献,若有侵权联系博主删除


相关文章
|
3天前
|
数据安全/隐私保护
地震波功率谱密度函数、功率谱密度曲线,反应谱转功率谱,matlab代码
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
|
3天前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
|
3天前
|
数据安全/隐私保护
matlab 曲线光滑,去毛刺,去离群值,数据滤波,高通滤波,低通滤波,带通滤波,带阻滤波
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
3天前
|
算法 调度
面向配电网韧性提升的移动储能预布局与动态调度策略(matlab代码)
面向配电网韧性提升的移动储能预布局与动态调度策略(matlab代码)
|
3天前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
|
3天前
|
运维 算法
基于改进遗传算法的配电网故障定位(matlab代码)
基于改进遗传算法的配电网故障定位(matlab代码)
|
3天前
|
Serverless
基于Logistic函数的负荷需求响应(matlab代码)
基于Logistic函数的负荷需求响应(matlab代码)
|
3天前
|
供应链 算法
基于分布式优化的多产消者非合作博弈能量共享(Matlab代码)
基于分布式优化的多产消者非合作博弈能量共享(Matlab代码)
|
4天前
|
算法 调度
基于多目标粒子群算法冷热电联供综合能源系统运行优化(matlab代码)
基于多目标粒子群算法冷热电联供综合能源系统运行优化(matlab代码)