基于改进遗传算法的配电网故障定位(matlab代码)

简介: 基于改进遗传算法的配电网故障定位(matlab代码)

1 主要内容

该程序复现文章《基于改进遗传算法的配电网故障定位》,将改进的遗传算法应用于配电网故障定位中, 并引入分级处理思想, 利用配电网呈辐射状的特点, 首先把整个配电网划分为主干支路和若干独立区域, 再利用该算法分别对各独立区域进行故障定位, 然后进行全局寻优, 这样能大大减少可行解的维数, 提高定位速度。使用该定位方法对一具有 20个节点的配电网系统进行故障定位的仿真实验, 它使可行解个数由 220 个减少到 144 个。结果表明, 该定位方法不仅定位准确, 而且定位速度快, 对复杂配电网的故障定位尤为有效。

  • 模型

该模型采用如下的算例模型进行计算,采用分级处理思想:各独立区域内只有一个电流注入点与区域外的其他节点直接相连, 各独立区域相互独立, 无交叉项。分区时,应首先确定一主干支路,然后把主干支 路的每一分支支路及其末梢部分分别划分为一个独立区域。如果某一独立区域的节点数比较多, 则还可将该独立区域再次划分为几个次级独立区域 , 在进行故障定位时 ,按照各独立区域的级别从低到高 逐次应用遗传算法进行求解。

2 部分代码

for i = 1:2:N-1    %这里设置成奇数的递进格式,方便两行互换
    if(rand1)指的是第一行
        POP.NEWchrom1(i,:) = [POP.chrom1(i,1:cpoint),POP.chrom1(i+1,cpoint+1:chromlength)]; 
        POP.NEWchrom1(i+1,:) = [POP.chrom1(i+1,1:cpoint),POP.chrom1(i,cpoint+1:chromlength)];        
    else
        POP.NEWchrom1(i,:) = POP.chrom1(i,:);   %如果rand大于变异概率,基因不变
        POP.NEWchrom1(i+1,:) = POP.chrom1(i+1,:);
        
    end
end
%% 根据交叉互换的结果 更新种群的基因
POP.chrom1=POP.NEWchrom1;
 %% 基因变异并更新种群
for i=1:N              %i指的是行数,j1和j2指的是列数
    for j1=1:chromlength    %染色体1的变异设置
        if(randend
    end   
end
    %% 性状的表达与选择
    % 将基因(二进制编码)转化为自变量的取值(10进制的数)
     
% for i=1:N                 %limit矩阵在之前的定义当中,全都是1的话,分子之和为2^chromlength(1),所以在乘法之前在1左右
%     POP.x1(i)=(binary2decimal(POP.chrom1(i,:)))/(2^chromlength(1)-1)*(limit(1,2)-limit(1,1));
% end
%% 根据自变量的取值代入得到函数的输出
for i=1:N
    POP.y(i)=f1(POP.chrom1(i,:));  %代入函数计算  
end
%% 将输出的结果单位化,转化为0-1之间的数值长度(相当于轮盘赌的各个区域的面积)
a=max(POP.y);          %找出函数值里面的最小值,其实后续会直接淘汰的
b=N*a-sum(POP.y);         
for i=1:N                    %给一个圆盘分N块区域,累加的和为1
    POP.adapt(i)=(a-POP.y(i))/b; 
end
%% 数值长度转换为0-1之间的区间的节点(相当于把面积转化为了轮盘赌上各个区域的边界线)
POP.NWEadapt(1)=POP.adapt(1);   %第一个点

3 部分程序结果

4 下载链接

相关文章
|
18天前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
101 0
|
18天前
|
机器学习/深度学习 算法 机器人
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
102 8
|
18天前
|
机器学习/深度学习 算法 自动驾驶
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
|
18天前
|
机器学习/深度学习 数据采集 负载均衡
结合多种启发式解码方法的混合多目标进化算法,用于解决带工人约束的混合流水车间调度问题(Matlab代码实现)
结合多种启发式解码方法的混合多目标进化算法,用于解决带工人约束的混合流水车间调度问题(Matlab代码实现)
|
18天前
|
机器学习/深度学习 人工智能 算法
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
|
2月前
|
机器学习/深度学习 传感器 算法
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
150 2
|
2月前
|
canal 算法 vr&ar
【图像处理】基于电磁学优化算法的多阈值分割算法研究(Matlab代码实现)
【图像处理】基于电磁学优化算法的多阈值分割算法研究(Matlab代码实现)
|
2月前
|
机器学习/深度学习 存储 算法
【微电网调度】考虑需求响应的基于改进多目标灰狼算法的微电网优化调度研究(Matlab代码实现)
【微电网调度】考虑需求响应的基于改进多目标灰狼算法的微电网优化调度研究(Matlab代码实现)
110 0
|
2月前
|
机器学习/深度学习 分布式计算 算法
【风场景生成与削减】【m-ISODATA、kmean、HAC】无监督聚类算法,用于捕获电力系统中风场景生成与削减研究(Matlab代码实现)
【风场景生成与削减】【m-ISODATA、kmean、HAC】无监督聚类算法,用于捕获电力系统中风场景生成与削减研究(Matlab代码实现)
145 0
|
2月前
|
存储 边缘计算 算法
【太阳能学报EI复现】基于粒子群优化算法的风-水电联合优化运行分析(Matlab代码实现)
【太阳能学报EI复现】基于粒子群优化算法的风-水电联合优化运行分析(Matlab代码实现)

热门文章

最新文章