通义万相陪我做作业-小学生暑假科技作业-太空电子琴
我是一个三年级的小学生,今年暑假有一个科技作业是要做一种乐器,让宇航员可以带到太空里去使用,然后这个乐器我的想法就是把它做成一个就可以让宇航员如果遇到外星人,可以跟他进行交流,把地球上动物的声音都传播给他,通过这种声音的方式跟外星人进行交流。我做这个暑假作业用到了两个工具,一个是通义万相,另外一个就是阿里云DataV。
还在因AI检测头疼?尝试一下 AI Humanize
AI Humanize是一款将AI文本转化为人性化、难以检测的高质量内容的工具。它提供基础和高级模型,支持多语言,如英语、中文等,并能在多种AI检测器中通过。训练于大量人类语料库,AI Humanize的"Humanize AI LLM"模型确保生成自然、流畅的文本,增强可读性和原创性,同时保持用户友好界面。适用于各领域的用户提升内容质量。[AI Humanize](https://aihumanize.io/)**
解密!通义智文-你的AI阅读助手!
通义智文是基于通义大模型的AI阅读助手,网页阅读、论文阅读、图书阅读和自由阅读,用AI帮你读得多、读得快、读得懂。 通过文档场景化阅读、结构化导读、给我灵感、多文档处理等亮点功能和文档智能大小模型协同的核心技术。让AI帮你更准确,更深入,更专业的读懂文档,沉淀专属知识资产。 产品已于2023年10月31日在云栖大会正式对外发布,现免费公测全面开放。
AI Agent 落地实战:破解「浮光行为」困局与开发者职业进阶体系
2024年AI Agent进入落地关键期,但“浮光行为”成核心障碍:表面自动化、实则脱离业务本质。本文揭示其三大工程特征与风险,提出开发者从提示词搭建到多智能体编排的三级进阶路径,倡导以业务建模、元认知技术与系统思维构建真正闭环的智能体系统。
AI Agent指挥官在智能体来了(西南总部)中的定义、职责与Prompt控制逻辑
AI Agent指挥官是多智能体系统的调度与治理中枢,通过任务拆解、角色分配、Prompt统一管控及闭环反馈,将大模型“个体智能”升维为可控、可解释、可扩展的“组织智能”,赋能企业级智能协同与产业落地。(
大模型微调技术入门:从核心概念到实战落地全攻略
本课程系统讲解大模型微调核心技术,涵盖全量微调与高效微调(LoRA/QLoRA)原理、优劣对比及适用场景,深入解析对话定制、领域知识注入、复杂推理等四大应用,并介绍Unsloth、LLaMA-Factory等主流工具与EvalScope评估框架,助力从入门到实战落地。
一键部署开源Qwen3并集成到钉钉、企业微信
Qwen3系列模型现已正式发布并开源,包含8款“混合推理模型”,其中涵盖两款MoE模型(Qwen3-235B-A22B与Qwen3-30B-A3B)及六个Dense模型。阿里云计算巢已支持Qwen3-235B-A22B和Qwen3-32B的私有化部署,用户可通过计算巢轻松完成部署,并借助AppFlow集成至钉钉机器人或企业微信。文档详细介绍了从模型部署、创建应用到配置机器人的全流程,帮助用户快速实现智能助手的接入与使用。
如何成为企业级大模型架构师?
企业级大模型架构师需要掌握从 底层算力、模型训练、微调优化、推理部署、企业集成 到 安全合规 的全栈能力。这里提供一个完整的 企业级大模型架构师成长体系。
探索大模型部署:基于 VLLM 和 ModelScope 与 Qwen2.5 在双 32G VGPU 上的实践之旅
本文介绍了使用 `VLLM` 和 `ModelScope` 部署 `Qwen2.5` 大模型的实践过程,包括环境搭建、模型下载和在双 32G VGPU 上的成功部署,展现了高性能计算与大模型结合的强大力量。
大模型应用:构建智能大模型运维体系:模型健康度监测系统实践.8
本系统是面向大模型的智能健康度监测平台,采用前后端分离架构(Flask+HTML/CSS/JS),实现四层立体监控(系统资源、模型运行、服务性能、业务质量)。支持实时指标采集、动态基准线告警、多维性能评分及可视化看板,具备请求全链路追踪与预测性运维能力。
从单体到集群:AI Agent 中“指挥官”与“调度官”的双层协作模式设计
本文提出一种“指挥官+调度官”双层治理架构,解决多智能体系统中的通信混乱与任务死锁问题。指挥官负责高层规划,调度官专注任务分发,通过职责解耦实现高效协作,并结合Python代码展示核心实现,提升复杂场景下多Agent系统的稳定性与可扩展性。
构建AI智能体:八十七、KM与Chinchilla法则:AI模型发展的两种训练法则完全解析
摘要: 大模型训练中,如何在有限计算预算(C≈6ND)下最优分配模型参数量(N)与训练数据量(D)是关键挑战。KM扩展法则主张“模型优先”,认为增大N的收益高于D(α=0.076<β=0.103),推荐N∝C^0.73、D∝C^0.27。Chinchilla法则则通过实验发现大模型普遍训练不足,提出平衡策略(α=β≈0.38),推荐N∝D∝C^0.5,即在相同预算下减小模型规模并大幅增加数据量,可提升性能。
Qwen3-Omni新升级:声形意合,令出智随!
Qwen3-Omni-Flash-2025-12-01是全新升级的全模态大模型,支持文本、图像、音频、视频输入,实现自然语音与文本同步输出。全面优化音视频理解与生成,支持多轮流畅对话、自定义人设与系统指令,提升多语言及跨模态交互准确性,语音更拟人,图像视频理解更深入,打造“声形意合”的智能交互体验。(239字)
30分钟搞定媒体级新闻稿,这个AI提示词让技术人也能玩转公关写作
开发者常因新闻稿写作犯难,本文分享一套AI提示词工具,涵盖角色定义、结构化输入输出、多场景适配与合规检查,助力技术人快速生成符合媒体标准的专业稿件,提升传播效率。
最佳实践3:用通义灵码开发一款 App
本示例演示使用通义灵码,基于React Native与Node.js开发跨平台类通义App,重点展示iOS端实现。涵盖前端页面生成、后端代码库自动生成、RTK Query通信集成及Qwen API调用全过程,体现灵码在全栈开发中的高效能力。(238字)
MoE模型加速秘籍:vLLM混合KV缓存管理解析
vLLM是高效分布式大模型推理引擎,采用分页注意力、连续批处理等技术实现高吞吐与低延迟。本文详解其架构设计与关键技术,包括KV缓存管理、调度机制、推测解码与分布式扩展等,助你深入理解性能优化原理。
深度解析大模型压缩技术:搞懂深度学习中的减枝、量化、知识蒸馏
本文系统解析深度学习模型压缩三大核心技术:剪枝、量化与知识蒸馏,详解如何实现模型缩小16倍、推理加速4倍。涵盖技术原理、工程实践与组合策略,助力AI模型高效部署至边缘设备。
Qwen-MT:翻得快,译得巧
今天,机器翻译模型Qwen-MT正式上线,支持92种语言互译,具备高度可控性与低延迟、低成本特点,适用于多种场景。开发者可通过Qwen API体验其强大翻译能力。
通义大模型与现有企业系统集成实战《CRM案例分析与安全最佳实践》
本文档详细介绍了基于通义大模型的CRM系统集成架构设计与优化实践。涵盖混合部署架构演进(新增向量缓存、双通道同步)、性能基准测试对比、客户意图分析模块、商机预测系统等核心功能实现。同时,深入探讨了安全防护体系、三级缓存架构、请求批处理优化及故障处理机制,并展示了实时客户画像生成和动态提示词工程。通过实施,显著提升客服响应速度(425%)、商机识别准确率(37%)及客户满意度(15%)。最后,规划了技术演进路线图,从单点集成迈向自主优化阶段,推动业务效率与价值持续增长。
万码优才联合阿里云通义千问破解“人岗错配”困局
2025年3月11日,浙江万有码力网络科技有限公司(以下简称“万码优才”)与阿里云计算有限公司(以下简称“阿里云”)在杭州云谷园区正式签署合作协议。双方宣布将基于阿里云通义大模型与万码优才第三代AI招聘平台,共同打造“云智人才生态引擎”,推动人力资源服务从“效率工具”向“基础设施”升级。
【奶奶看了都会】ComfyUI+SVD制作AI视频教程,附效果演示
AI一天,人间一年。大家好啊,我是小卷,最近AI绘画又发展出一些新玩意了,小卷因为工作的关系有一个月没关注AI的发展了,都有点跟不上版本节奏了。。。
【架构模式】解构多智能体协作:AI Agent “指挥官”与“调度官”的双层治理实践
本文提出“指挥官-调度官”双层架构,解决多智能体系统中的意图漂移、死循环与资源竞争问题。通过职能分离,实现高并发、高可用的复杂任务协同。
Pipeline AI Agent - 让数据管道听懂人话
TIS v5.0推出国内首个大数据原生Pipeline AI Agent,通过自然语言对话实现数据管道智能创建。告别繁琐配置,AI自动完成插件选择、参数填充与任务执行,支持MySQL、Paimon等主流数据源,结合SSE实时推送与Plan-and-Execute架构,3分钟极速构建同步链路,大幅降低使用门槛,开启数据集成“对话时代”。
构建AI智能体:七十一、模型评估指南:准确率、精确率、F1分数与ROC/AUC的深度解析
本文系统介绍了机器学习模型评估的核心指标与方法。首先阐述了混淆矩阵的构成(TP/FP/FN/TN),并基于此详细讲解了准确率、精确率、召回率和F1分数的计算原理和适用场景。特别指出准确率在不平衡数据中的局限性,强调精确率(减少误报)和召回率(减少漏报)的权衡关系。然后介绍了ROC曲线和AUC值的解读方法,说明如何通过调整分类阈值来优化模型性能。最后总结了不同业务场景下的指标选择策略:高精度场景侧重精确率,高召回场景关注召回率,平衡场景优选F1分数,不平衡数据则推荐使用AUC评估。
万小智AI建站:1分钟建站,让品牌拥有“有灵魂”的官网
阿里云「万小智AI建站」基于大模型技术,实现“一句话建站,一分钟上线”。集成AI设计、智能客服、内容生成与云资源部署,5分钟打造专业官网,支持千款行业模板、多语言内容创作与24小时智能客服,助力中小企业高效建站、低成本获客。
一条AI指令,解决"发朋友圈不知道写啥"的千古难题
技术人发朋友圈总犯难?项目上线怕炫耀,生活瞬间不知如何表达。其实,用AI辅助写作是个妙招。关键在于给出清晰指令:明确场景、风格与需求,让AI生成真实自然、有温度的文案。本文提供一套即拿即用的AI指令模板,覆盖生活、工作、旅行等六大场景,帮你快速生成不“AI味”的朋友圈内容。省下纠结时间,真诚分享生活,才是正解。
TypeScript vs. JavaScript:技术对比与核心差异解析
TypeScript 作为 JavaScript 的超集,通过静态类型系统、编译时错误检测和强大的工具链支持,显著提升代码质量与可维护性,尤其适用于中大型项目和团队协作。相较之下,JavaScript 更灵活,适合快速原型开发。本文从类型系统、错误检测、工具支持等多维度对比两者差异,并提供技术选型建议,助力开发者合理选择。
上海徐汇区大模型备案与大模型登记奖励补贴申报指南
上海徐汇区启动大模型备案及服务登记奖励申报,最高奖励500万元。适用于已通过备案或登记的企业,申报期为2025年8月29日至9月12日。奖励政策旨在推动人工智能产业发展,申报材料包括备案/登记证明、信用代码、身份证明等。纸质与电子材料需按要求提交。
大模型备案要点一次过【附材料清单详解】
广东省最新公布一批大模型备案名单,新增14款备案模型、6款登记模型,累计达80款备案、23款登记。文章详解大模型备案流程、周期(5-10个月)、要求(主体资质、数据合规、内容安全、模型完成度)、所需材料(备案表、安全评估报告、服务协议、语料标注规则等)及完整备案流程(初审、自测、提交、整改、终审、公示)。为大模型企业备案提供全面指导。
2025年大模型发展脉络:深入分析与技术细节
本文深入剖析2025年大模型发展脉络,涵盖裸模型与手工指令工程、向量检索、文本处理与知识图谱构建、自动化提示生成、ReAct多步推理及AI Agent崛起六大模块。从技术细节到未来趋势,结合最新进展探讨核心算法、工具栈与挑战,强调模块化、自动化、多模态等关键方向,同时指出计算资源、数据质量和安全伦理等问题。适合关注大模型前沿动态的技术从业者与研究者。
AiChat—智能办公助手
在当今的数字化时代,人工智能(AI)已经在各个领域中展现出了强大的能力和潜力。AI在许多方面都为我们的生活带来了便利,其中最显著的一点就是在我们的日常交流和工作中。 现在,最简单的低门槛软件应该是AiChat……
大模型应用:大模型参数调优:结合本地模型对比多种组合探索差异.7
本文系统解析大模型核心生成参数(如temperature、top_p、top_k、repetition_penalty等)的原理、作用机制与实践影响,结合Qwen1.5-1.8B本地模型实测,通过创意写作、技术问答、代码生成三类任务对比分析参数组合效果,并提供分场景调优建议与黄金配置方案,助力从“调参新手”进阶为“生成质量掌控者”。
Java+AI 核心指南:大模型丝滑接入与多模型统一范式
在AI深入企业应用的背景下,Java凭借稳定的工程化能力、成熟生态和存量系统兼容性,成为AI落地的关键。本文探讨Java如何高效集成AI,强调“用模型”而非“造模型”,聚焦复用现有技术栈、工程化落地与多模型统一管理,助力企业实现智能化升级。
智能体领航员:2026 开启“智能体互联网 (IoA)”下的全自动商业博弈
2026年,智能体互联网(IoA)爆发,智能体从“替代人工”迈向“自主交易”。通过语义化握手、自主谈判与分布式协议,实现跨域意图拦截与资源套利。领航员将升级为规则制定者,掌控价值对齐与安全边界,开启全自动商业新纪元。
放弃手搓算法吧!ReEvo:让大模型通过“反思”自动进化出SOTA算法
ReEvo提出“语言梯度”新范式,让大模型通过自我反思进化算法。它使LLM不再盲写代码,而是像专家般分析优劣、总结经验,逐步优化出超越人类设计的启发式算法,在芯片布局、TSP等问题上表现SOTA,实现AI自动“炼”算法的突破。
一个尚在公测的产品,凭什么能登顶AI排行第一名
OiiOii内测即登顶AIWW动画生成榜首,揭示AI应用竞争逻辑之变:从流量堆砌转向价值共鸣。市场正由“技术参数”比拼,迈向“可感知价值”的终极战场——真实需求、清晰定位与体验差异成关键。此非流量奇迹,而是行业向产品本质回归的信号。
百度下场做GEO?笑死人了
百度所谓“GEO”实为换壳广告营销,打着AI优化旗号,行“付费上榜”之实。本质是用旧套路收割企业焦虑,而真正GEO应是高质量内容与数据驱动的生态建设,而非在枯井里打水。别做AI时代的韭菜。
从程序员到UP主:一个结构化的B站视频文案生成方案
专为技术人打造的B站视频文案生成指令,结构化拆解内容创作流程。输入主题、类型等信息,结合AI一键生成含分镜脚本、标题、SEO及互动设计的完整方案,提升创作效率与视频质量。
超越问答:深入理解并构建自主决策的AI智能体(Agent)
如果说RAG让LLM学会了“开卷考试”,那么AI智能体(Agent)则赋予了LLM“手和脚”,使其能够思考、规划并与真实世界互动。本文将深入剖析Agent的核心架构,讲解ReAct等关键工作机制,并带你一步步构建一个能够调用外部工具(API)的自定义Agent,开启LLM自主解决复杂任务的新篇章。
技术人的知识输出利器:一套高质量知乎回答生成指令模板
本文提供一套系统化知乎高赞回答生成模板,结合AI工具(如DeepSeek、通义千问),助力技术人高效输出高质量内容。涵盖结构框架、质量检查、实战示例与合规建议,提升表达清晰度与内容价值,适用于经验分享、技术科普等多种场景,实现知识输出的标准化与高效化。
告别只会写提示词:构建生产级LLM系统的完整架构图
本文系统梳理了从提示词到生产级LLM产品的八大核心能力:提示词工程、上下文工程、微调、RAG、智能体开发、部署、优化与可观测性,助你构建可落地、可迭代的AI产品体系。
AIGC技术深度解析:生成式AI的革命性突破与产业应用实战
蒋星熠Jaxonic,AI技术探索者,深耕生成式AI领域。本文系统解析AIGC核心技术,涵盖Transformer架构、主流模型对比与实战应用,分享文本生成、图像创作等场景的实践经验,展望技术趋势与产业前景,助力开发者构建完整认知体系,共赴AI原生时代。
用 LangChain4j+Ollama 打造 Text-to-SQL AI Agent,数据库想问就问
本文介绍了如何利用AI技术简化SQL查询操作,让不懂技术的用户也能轻松从数据库中获取信息。通过本地部署PostgreSQL数据库和Ollama模型,结合Java代码,实现将自然语言问题自动转换为SQL查询,并将结果以易懂的方式呈现。整个流程简单直观,适合初学者动手实践,同时也展示了AI在数据查询中的潜力与局限。