用通义灵码开发一个Python时钟:手把手体验AI程序员加持下的智能编码
通义灵码是基于通义大模型的AI研发辅助工具,提供代码智能生成、研发问答、多文件修改等功能,帮助开发者提高编码效率。本文通过手把手教程,使用通义灵码开发一个简单的Python时钟程序,展示其高效、智能的编码体验。从环境准备到代码优化,通义灵码显著降低了开发门槛,提升了开发效率,适合新手和资深开发者。最终,你将体验到AI加持下的便捷与强大功能。
AI大模型安全风险和应对方案
AI大模型面临核心安全问题,包括模型内在风险(如欺骗性对齐、不可解释性和模型幻觉)、外部攻击面扩大(如API漏洞、数据泄露和对抗性攻击)及生成内容滥用(如深度伪造和虚假信息)。应对方案涵盖技术防御与优化、全生命周期管理、治理与行业协同及用户教育。未来需关注动态风险适应、跨领域协同和量子安全预研,构建“技术+管理+法律”三位一体的防护体系,推动AI安全发展。
高效部署通义万相Wan2.1:ComfyUI文生/图生视频实战,工作流直取!
通义万相Wan2.1开源不到一周,已登顶HuggingFace Model 和 Space 榜双榜首,在HuggingFace和ModelScope平台的累计下载量突破100万次,社区热度持续攀升!为响应小伙伴们对ComfyUI工作流运行Wan2.1的强烈需求,社区开发者整理了实战教程👇
套用算法模板备案审核问题增多的原因及解决建议
随着算法备案要求的完善,企业常因使用网上廉价模板而遭遇审核通过率低、问题增多的困境。本文分析了审核不通过的原因,包括模板缺乏针对性、审核标准严格、审核人员主观差异及企业准备不足等,并提出建议:深入了解备案要求、准备详尽材料、避免通用模板、寻求专业帮助。备案后还需持续合规管理,确保算法服务安全运行。
阿里云零门槛、轻松部署您的专属 DeepSeek模型体验测试
DeepSeek R1是基于Transformer架构的先进大规模深度学习模型,2025年1月20日发布并开源,遵循MIT License。它在自然语言处理等任务上表现出色,高效提取特征,缩短训练时间。阿里云推出的满血版方案解决了服务器压力问题,提供100万免费token,云端部署降低成本,用户可快速启动体验。虽然回答速度有待提升,但整体表现优异,备受关注。
基于 DIFY 的自动化数据分析实战
本文介绍如何使用DIFY搭建数据分析自动化流程,实现从输入需求到查询数据库、LLM分析再到可视化输出的全流程。基于经典的employees数据集和DIFY云端环境,通过LLM-SQL解析、SQL执行、LLM数据分析及ECharts可视化等模块,高效完成数据分析任务。此方案适用于人力资源分析、薪酬管理等数据密集型业务,显著提升效率并降低成本。
钉钉项目 Teambition AI 能力重塑项目管理100种可能!
钉钉项目Teambition AI迎来重磅升级,通义千问与DeepSeek两大模型助力AI项目管理。从项目规划、任务创建到执行建议、字段管理,再到周报总结和数据分析,Teambition AI贯穿项目全流程,重塑项目管理100种可能。AI技术赋能项目管理智能化,提升团队协作效率,确保项目进度精准把控,让任务分配、资源调度和风险管理更加轻松高效。
通过宏实现Word接入DeepSeek
本文介绍如何在Microsoft Word中通过宏接入DeepSeek,实现自动化文本处理。首先确保具备Word 2016及以上版本、DeepSeek API密钥和VBA基础。接着,从豆包平台获取API密钥及模型ID,并在Word中启用开发者选项和宏功能。最后,编写VBA宏代码调用DeepSeek API,完成文本分析与处理。
垂直领域大模型必须备案吗?90%企业都搞错的大模型备案真相!
珠宝设计师专用的大模型是否需要备案?本文解析大模型备案与算法备案的区别及法规边界。大模型备案针对公众服务,仅面向专业设计师可暂缓;但算法备案必须完成。涉及深度合成类算法的企业需在30日内备案。合规不仅是义务,更是提升企业竞争力的关键。
个人信息保护合规审计管理办法
《个人信息保护合规审计管理办法》由国家互联网信息办公室于2024年5月20日审议通过,自2025年5月1日起施行。该办法旨在规范个人信息保护合规审计活动,确保个人信息处理者遵守相关法律法规,保护个人权益。主要内容包括:个人信息处理者的合规审计义务、特定情况下强制审计要求、专业机构的资质与责任、以及对违规行为的处罚措施等。此外,还明确了处理超过1000万人个人信息的企业需每两年至少进行一次合规审计,并对敏感信息处理、未成年人信息保护、跨境数据传输等方面提出了具体要求。
【算法备案新风向】个人信息保护合规审计来了!关键点全解读
国家网信办发布《个人信息保护合规审计管理办法》,自2025年5月1日起施行。该办法适用于所有在中国境内处理个人信息的主体,特别是处理超1000万人信息的企业需每两年审计一次。触发审计情形包括重大风险、侵害个人权益或大规模信息泄露。企业可自行或委托专业机构审计,报告需报送相关部门。违规将依据《个人信息保护法》处理,严重者追究刑事责任。此举旨在保护个人隐私、规范企业运营,提升公众信任。企业和个人应积极响应,共同营造安全可信的数字环境。
接入DeepSeek需要做算法备案吗?一文读懂算法备案的那些事儿
在AI快速发展的今天,算法备案成为企业合规运营的关键。本文通过五个案例解析接入DeepSeek是否需备案:1) 微调模型需备案,流程4-6个月;2) 面向公众服务需备案;3) 内部使用通常无需备案;4) 个人自用无需备案;5) 面向特定专业人士通常无需备案。了解这些要求,确保企业在享受AI红利的同时合规运营,规避风险。
阿里云DataWorks接入DeepSeek大模型
2025年2月18日,阿里云DataWorks正式接入DeepSeek-R1(671B)与DeepSeek-R1-Distill-Qwen-32B大模型。此举显著提升平台的数据处理、分析和治理能力,简化数据开发流程,并支持智能数据查询、自动化报告生成等应用场景,推动企业级数据治理智能化进程,助力企业实现数据驱动的创新发展。
Ai好记全面接入DeepSeek大模型!重塑知识管理新体验
Ai好记融合DeepSeek大模型,带来知识管理新纪元。视频秒变知识胶囊,外语资料自动转母语,一键构建思维导图。六大核心能力包括结构化笔记、AI播客、全平台解析等,全面提升学习和工作效率。立即登录aihaoji.com体验!
搞定!微信接入DeepSeek打造聊天机器人,1行代码就行!
程序员晚枫分享了一个有趣的Python项目,将DeepSeek大模型接入微信,实现自动聊天。通过PyOfficeRobot库,仅需1行代码即可完成接入,打造AI聊天机器人。该项目基于Windows API操作微信,目前仅支持Windows系统。用户需填写好友名称和API Key,轻松体验AI对话。此外,PyOfficeRobot还支持其他大模型如阿里通义、智谱等。欢迎尝试并参与改进开源项目。
DeepSeek——DeepSeek模型部署实战
本文介绍了DeepSeek大模型的本地部署方法、使用方式及API接入。首先,通过下载Ollama平台部署DeepSeek-R1模型,提供7种不同参数版本(1.5b至671b),用户可根据硬件选择合适的模型大小。接着,文章详细描述了如何在终端运行命令启动模型,并通过Chatbox官网下载并接入DeepSeek API,实现本地和云端模型的交互。最后,提及了DeepSeek官网和集成工具如POE的使用,帮助用户更好地利用DeepSeek进行开发和应用。
免费+数据安全!手把手教你在PC跑DeepSeek-R1大模型,小白也能秒变AI大神!
本地部署AI模型(如DeepSeek R1)保障数据隐私、节省成本且易于控制,通过Ollama平台便捷安装与运行,结合可视化工具(如Chatbox)及Python代码调用,实现高效、个性化的AI应用开发与使用。
DeepSeek-R1论文细节时间线梳理
中国AI初创公司DeepSeek发布了大语言模型R1,该模型在推理任务上媲美OpenAI的ChatGPT,且训练成本仅600万美元。DeepSeek由杭州对冲基金High-Flyer支持,总部位于杭州和北京。R1基于V3-Base,使用监督微调和强化学习训练,针对硬件限制进行了优化。模型在多语言处理、推理风格等方面表现出色,但存在一些局限性,如法语表现欠佳、偶尔切换语言等。DeepSeek的创新技术包括FP8量化、多头潜在注意力和蒸馏方法,引发了广泛关注和讨论。开源社区正积极尝试复现其结果,但面临训练数据和代码未公开的挑战。DeepSeek的低成本高效训练策略为AI领域带来了新的思考方向。
三分钟让Dify接入Ollama部署的本地大模型!
本文详细介绍了如何在 Dify 中接入 Ollama 模型,包括模型添加、参数配置及常见问题解决。通过运行 Ollama 服务并与 qwen2:0.5b 模型交互,实现本地化大模型应用开发。同时提供了 Docker、Mac、Linux 和 Windows 平台上 Ollama 的部署与环境变量设置指南,帮助开发者快速上手。更多实战技巧可访问[编程严选网](http://www.javaedge.cn/)或关注作者的 Github 仓库。
Java工程师如何理解张量?
刚接触AI和PyTorch,理解“张量(Tensor)”是入门关键。张量可类比为Java中的多维数组,但更强大,尤其在AI领域支持GPU加速、自动求导等特性。它不仅能高效存储数据,还能进行复杂运算,是深度学习的核心数据结构。掌握张量的维度、数据类型及GPU加速特性,对学习PyTorch至关重要。
【2025】世界顶级AI模型本地部署私有化完整版教程 DeepSeek-R1+Ollama+ChatboxAI合体,瞬间升级你的个人电脑秒变智能神器!
震撼发布!让你的电脑智商飙升,DeepSeek-R1+Ollama+ChatboxAI合体教程,打造私人智能神器!
为什么自己写的算法备案文档越改问题越多?
算法备案文档撰写中,许多开发者遇到越改问题越多的困境。主要原因包括:缺乏明确指导标准、对算法理解不深、部门间沟通协作不足、审核反馈机制缺失及撰写人员专业性不足。为解决这些问题,建议深入学习备案要求、加强算法研究、建立有效沟通机制、严格审核反馈,并寻求专业人士帮助。通过这些方法,可以提高文档质量,确保顺利通过审核。
操作系统智能助手OS Copilot新功能
作为一名公司的研发人员,我体验了OS Copilot的安装与使用。尽管我的工作主要涉及前后端开发,对云服务有一定了解。OS Copilot的安装过程直观顺利,但目前支持的操作系统较少。通过-t和-f功能,可以快速测试命令输出、处理批量任务及调试脚本,显著提升了工作效率。然而,管道功能在实际应用中存在识别文件路径的问题,有待改进。总体而言,OS Copilot极大地提高了我的运维效率,并成为开发中的有效工具,我对它的未来潜力充满信心。
操作系统智能助手OS Copilot新功能
我是一名公司前端开发人员,专注于官网和H5页面的开发,涵盖页面构建、交互逻辑及性能优化。主要负责静态和移动端页面开发,不直接涉及云资源运维,但在项目部署时会接触云服务器。 关于Copilot的使用体验:安装过程顺畅,目前功能较少,建议增加更多功能和中文支持。核心功能包括-t代理模式(实现黑客帝国代码瀑布效果但未达预期)、-f读取文件(生成随机字符接近目标但仍需改进)和管道功能(稳定性欠佳)。总体而言,-t/-f选项实用,管道功能需完善。
云产品评测|操作系统智能助手OS Copilot新功能
作为一名企业开发人员,我最近测试了 OS Copilot 的 -t、-f 功能及管道功能。-t 功能能正确识别并解释端口号,但界面操作需优化;-f 功能成功完成自定义任务,但在交互连续性上有待改进;管道功能表现最佳,支持简便的自定义任务操作。建议在 -t 功能中增加交互入口,并优化 -f 功能的后续操作体验。
不属于五种算法是否无需备案?一文读懂算法备案的真相
在数字化时代,算法成为互联网服务的核心技术。为应对算法歧视、大数据杀熟等问题,我国出台了算法备案制度,规范算法使用,保护用户权益。五种常见算法(生成合成、个性化推送、排序精选、检索过滤、调度决策)需备案,但其他类型算法在特定情况下也需备案,如涉及舆论属性或社会动员能力。未备案将面临法律责任,企业应严格遵守规定,确保合规运营。算法备案不仅是法律要求,更是企业对社会责任的体现。
单纯接入第三方模型就无需算法备案了么?
随着人工智能的发展,企业接入第三方模型提升业务能力的现象日益普遍,但算法备案问题引发诸多讨论。根据相关法规,无论使用自研或第三方模型,只要涉及向中国境内公众提供算法推荐服务,企业均需履行备案义务。这不仅因为服务性质未变,风险依然存在,也符合监管要求。备案内容涵盖模型基本信息、算法优化目标等,且需动态管理。未备案可能面临法律和运营风险。建议企业提前规划、合规管理和积极沟通,确保合法合规运营。
【算法合规新时代】企业如何把握“清朗·网络平台算法典型问题治理”专项行动?
在数字化时代,算法推动社会发展,但也带来了信息茧房、大数据杀熟等问题。中央网信办发布《关于开展“清朗·网络平台算法典型问题治理”专项行动的通知》,针对六大算法问题进行整治,明确企业需落实算法安全主体责任,建立健全审核与管理制度,并对算法进行全面审查和备案。企业应积极自查自纠,确保算法合规透明,防范风险,迎接新机遇。
Microsoft Edge 插件上架发布全流程指南
在前两篇文章中,我分别讲解了如何将产品上架到 Chrome Web Store 和 Firefox Add-ons。今天,我们将继续探索另一个重要的浏览器插件市场——Microsoft Edge 插件商店。如果你已经熟悉 Chrome 和 Firefox 插件的上架流程,那么这篇文章会让你更快上手 Edge 插件的发布。同时,我也会在关键环节与 Chrome 和 Firefox 进行对比,帮助你更好地理解三者的异同。
【独家解密】如何在一个多月内高效完成多模态算法备案?一次性通过攻略大公开
在AI高速发展的时代,算法备案是产品上线的必备资质。本文分享了如何在短短一个多月内一次性通过算法备案的成功经验。筹备阶段包括网站注册、公司资料准备、算法制度及安全保障的制定;技术资料准备阶段确保算法描述清晰、流程精确、风险防控到位;提交后耐心等待审核结果,最终成功公示。关键在于充分准备和团队协作,希望这些经验能助你顺利通过备案。
操作系统智能助手OS Copilot新功能
我是一名专注于公司官网和H5页面开发的前端工程师,主要负责页面构建、交互逻辑及性能优化。近期使用GitHub Copilot进行开发辅助,体验如下: 1. **安装与初步使用**:安装过程顺利,但目前功能较少,建议增加更多功能和中文支持。 2. **核心功能体验**: - **-t 代理模式**:尝试实现《黑客帝国》代码瀑布效果,但未能完全达到预期。 - **-f 文件读取**:通过文件描述需求,生成随机字符文本,接近目标但仍需改进。 - **管道功能**:处理代码解释时稳定性欠佳,有待完善。 总体而言,Copilot的-t/-f选项实用,但连续对话和管道功能还需提升。
操作系统智能助手OS Copilot新功能
作为一名公司的研发人员,我虽主要从事前后端开发,但也对云服务有所了解。在安装并体验OS Copilot的过程中,我深刻感受到其强大功能和便捷性。安装过程顺利直观,-t功能可快速测试命令输出,节省时间并提供有益信息;-f功能提升了批量任务处理和调试脚本的效率;管道功能虽有改进空间,但整体显著提升工作效率,特别是在处理复杂脚本和自动化任务时,减少了错误率。我相信OS Copilot未来潜力巨大,期待其进一步优化。