Github: https://github.com/wangzhiwubigdata/God-Of-BigData
Flink的常见异常众多,不可能面面俱到,所以想到哪儿写到哪儿,有漏掉的之后再补充。部署和资源问题(0) JDK版本过低这不是个显式错误,但是JDK版本过低很有可能会导致Flink作业出现各种莫名其妙的问题,因此在生产环境中建议采用JDK 8的较高update(我们使用的是181)。
kafka kafka 属于 Stream 的消费模型,为了支持多 partition 的消费关系,引入了 consumer group 的概念,同时支持在消费端动态的 reblance 操作,当多个 Consumer 订阅了同一个 Topic 时,会根据分区策略进行消费者订阅分区的重分配。
今天在改老代码的过程中,亲眼见证了一段30个if-else嵌套的代码... 然后搜集了一些资料做了以下简单整理。 概述 ifelse是任何编程语言的重要组成部分。但是我们编写了大量嵌套的if语句,这使得我们的代码更加复杂和难以维护。
5万人关注的大数据成神之路,不来了解一下吗?5万人关注的大数据成神之路,真的不来了解一下吗?5万人关注的大数据成神之路,确定真的不来了解一下吗? 欢迎您关注《大数据成神之路》 面试题:如何保证消息队列的高可用? 面试官心理分析 如果你的简历里写了MQ,如果有人问到你 MQ 的知识,高可用是必问的。
5万人关注的大数据成神之路,不来了解一下吗?5万人关注的大数据成神之路,真的不来了解一下吗?5万人关注的大数据成神之路,确定真的不来了解一下吗? 欢迎您关注《大数据成神之路》 前言 对于Flink中各个组件(JobMaster、TaskManager、Dispatcher等),其底层RPC框架基于Akka实现,本文着重分析Flink中的Rpc框架实现机制及梳理其通信流程。
5万人关注的大数据成神之路,不来了解一下吗?5万人关注的大数据成神之路,真的不来了解一下吗?5万人关注的大数据成神之路,确定真的不来了解一下吗? 欢迎您关注《大数据成神之路》 前言 Flink提供了两种在yarn上运行的模式,分别为Session-Cluster和Per-Job-Cluster模式,本文分析两种模式及启动流程。
一.前言 在Spark中有三种shuffle写,分别是BypassMergeSortShuffleWriter、UnsafeShuffleWriter、SortShuffleWriter。分别对应三种不同的shuffleHandle。
1.注册UDF函数1.1 注册相关方法此处,我们使用的udf函数为标量函数,它继承的是ScalarFunction,该类在我们的使用中,发现它继承自UserDefinedFunction这个类,该处的udf函数由用户自己定义,而函数的注册此处我们自己实现; 函数注册时,使用flink的tableE.
5万人关注的大数据成神之路,不来了解一下吗?5万人关注的大数据成神之路,真的不来了解一下吗?5万人关注的大数据成神之路,确定真的不来了解一下吗? 欢迎您关注《大数据成神之路》 今天接到一个同学的反馈问题,大概是: Flink程序运行一段时间就会报这个错误,定位好多天都没有定位到。
5万人关注的大数据成神之路,不来了解一下吗? 5万人关注的大数据成神之路,真的不来了解一下吗? 5万人关注的大数据成神之路,确定真的不来了解一下吗? 欢迎您关注《大数据成神之路》 使用Flink处理数据时,可以基于Flink提供的批式处理(Batch Processing)和流式处理(Streaming Processing)API来实现,分别能够满足不同场景下应用数据的处理。
5万人关注的大数据成神之路,不来了解一下吗?5万人关注的大数据成神之路,真的不来了解一下吗?5万人关注的大数据成神之路,确定真的不来了解一下吗? Apache Flink中,Window操作在流式数据处理中是非常核心的一种抽象,它把一个无限流数据集分割成一个个有界的Window(或称为Bucket),然后就可以非常方便地定义作用于Window之上的各种计算操作。
5万人关注的大数据成神之路,不来了解一下吗? 5万人关注的大数据成神之路,真的不来了解一下吗? 5万人关注的大数据成神之路,确定真的不来了解一下吗? 随着近来越来越多的业务迁移到 Flink 上,对 Flink 作业的准确性要求也随之进一步提高,其中最为关键的是如何在不同业务场景下保证 exactly-once 的投递语义。
5万人关注的大数据成神之路,不来了解一下吗? 5万人关注的大数据成神之路,真的不来了解一下吗? 5万人关注的大数据成神之路,确定真的不来了解一下吗? 作为工业级的流计算框架,Flink 被设计为可以每天处理 TB 甚至 PB 级别的数据,所以如何高吞吐低延迟并且可靠地在算子间传输数据是一个非常重要的课题。
2019年的 RedisConf 比以往时候来的更早一些,今年会议时间是4月1-3号,仍然是在旧金山鱼人码头Pier 27。恰逢今年是 Redis 第10周年,规模也比以往大一些,注册人数超过1600人,总共有80个议题,除了RedisLabs外还有很多云厂商和Redis用户带来分享。
为什么选择跳跃表目前经常使用的平衡数据结构有:B树,红黑树,AVL树,Splay Tree, Treep等。想象一下,给你一张草稿纸,一只笔,一个编辑器,你能立即实现一颗红黑树,或者AVL树出来吗?很难吧,这需要时间,要考虑很多细节,要参考一堆算法与数据结构之类的树,还要参考网上的代码,相当麻烦。
Hadoop解决大规模数据分布式计算的方案是MapReduce。MapReduce既是一个编程模型,又是一个计算框架。也就是说,开发人员必须基于MapReduce编程模型进行编程开发,然后将程序通过MapReduce计算框架分发到Hadoop集群中运行。
Actions reduce(func) Aggregate the elements of the dataset using a function func (which takes two arguments and returns one). The function should be commutative and associative so that it can be computed correctly in parallel. 这个方法会传入两个参数,计算这两个参数返回一个结果。
Spark相比于Mapreduce的一大优势就是提供了很多的方法,可以直接使用;另一个优势就是执行速度快,这要得益于DAG的调度,想要理解这个调度规则,还要理解函数之间的依赖关系。 本篇就着重描述下Spark提供的Transformations方法. 依赖关系 宽依赖和窄依赖 窄依赖(narrow dependencies) 窄依赖是指父RDD仅仅被一个子RDD所使用,子RDD的每个分区依赖于常数个父分区(O(1),与数据规模无关)。
终于开始看Spark源码了,先从最常用的spark-shell脚本开始吧。不要觉得一个启动脚本有什么东东,其实里面还是有很多知识点的。另外,从启动脚本入手,是寻找代码入口最简单的方法,很多开源框架,其实都可以通过这种方式来寻找源码入口。
前言 在项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark streaming从kafka中不断拉取数据进行词频统计。
阿里的一篇文章,可以先看看会对动态表有一个模糊的概念动态表就是一个根据流在动态变化的表。从阿里的例子可以看出,当一个表Stream发生改变的时候,就会引起Keyed Table这张表的一个动态变化,表Stream是一个无法撤回的表,Stream表是只能不停增加的一张表,但是Keyed Table 会根据Stream中数据的增长的变化来修改自己count出来的值,随着count值的改变就会使得以count为key的第二张表的改变,第二张表才是我们需要的结果。
现在有这样一个场景,我们需要将hbase做成一个数据流,而不是数据集。根据Flink自带的Flink-Hbase只能帮我们做到数据集,所以这个时候选择了重写Hbase的数据源。 package com.
简介 流式计算中,我们经常有一些场景是消费Kafka数据,进行处理,然后存储到其他的数据库或者缓存或者重新发送回其他的消息队列中。本文讲述一个简单的Redis作为Sink的案例。后续,我们会补充完善,比如落入Hbase,Kafka,Mysql等。
需求 某个图书网站,希望看到双十一秒杀期间实时的热销排行榜单。我们可以将“实时热门商品”翻译成程序员更好理解的需求:每隔5秒钟输出最近一小时内点击量最多的前 N 个商品/图书. 需求分解 将这个需求进行分解我们大概要做这么几件事情: 告诉 Flink 框架基于时间做窗口,我们这里用process...
简介 Apache Flink具有两个关系API - 表API和SQL - 用于统一流和批处理。Table API是Scala和Java的语言集成查询API,允许以非常直观的方式组合来自关系运算符的查询,Table API和SQL接口彼此紧密集成,以及Flink的DataStream和DataSet API。
简介 Flink-kafka-connector用来做什么? Kafka中的partition机制和Flink的并行度机制结合,实现数据恢复Kafka可以作为Flink的source和sink任务失败,通过设置kafka的offset来恢复应用 kafka简单介绍 关于kafka,我们会有专题文章介绍,这里简单介绍几个必须知道的概念。
广播变量简介 在Flink中,同一个算子可能存在若干个不同的并行实例,计算过程可能不在同一个Slot中进行,不同算子之间更是如此,因此不同算子的计算数据之间不能像Java数组之间一样互相访问,而广播变量Broadcast便是解决这种情况的。
时间 时间类型 Flink中的时间与现实世界中的时间是不一致的,在flink中被划分为事件时间,摄入时间,处理时间三种。 如果以EventTime为基准来定义时间窗口将形成EventTimeWindow,要求消息本身就应该携带EventTime 如果以IngesingtTime为基准来定义时间窗口将形成IngestingTimeWindow,以source的systemTime为准。
窗口 窗口类型 flink支持两种划分窗口的方式(time和count) 如果根据时间划分窗口,那么它就是一个time-window 如果根据数据划分窗口,那么它就是一个count-window flink支持窗口的两个重要属性(size和interval) 如果size=int...
分布式缓存 Flink提供了一个分布式缓存,类似于hadoop,可以使用户在并行函数中很方便的读取本地文件,并把它放在taskmanager节点中,防止task重复拉取。此缓存的工作机制如下:程序注册一个文件或者目录(本地或者远程文件系统,例如hdfs或者s3),通过ExecutionEnvironment注册缓存文件并为它起一个名称。
概述 Flink支持不同的重启策略,以在故障发生时控制作业如何重启 集群在启动时会伴随一个默认的重启策略,在没有定义具体重启策略时会使用该默认策略。 如果在工作提交时指定了一个重启策略,该策略会覆盖集群的默认策略默认的重启策略可以通过 Flink 的配置文件 flink-conf.yaml 指定。
DataStream算子将一个或多个DataStream转换为新DataStream。程序可以将多个转换组合成复杂的数据流拓扑。DataStreamAPI和DataSetAPI主要的区别在于Transformation部分。
本地安装单机版本Flink 一般来说,线上都是集群模式,那么单机模式方便我们测试和学习。 环境要求 本地机器上需要有 Java 8 和 maven 环境,推荐在linux或者mac上开发Flink应用: 如果有 Java 8 环境,运行下面的命令会输出如下版本信息: 如果有 maven 环境,运行下面的命令会输出如下版本信息: 开发工具推荐使用 ItelliJ IDEA。
首先我们来看一下编程结构: 编程结构 public class SocketTextStreamWordCount { public static void main(String[] args) throws Exception { if (args.
本文是例行介绍,熟悉的直接跳过 - 鲁迅 鲁迅: ... 大纲 入门篇: 放弃篇: 图片显示不了,戳这里: https://github.com/wangzhiwubigdata/God-Of-BigData/blob/master/Flink Flink是什么 一句话概括 Apache Flink是一个面向分布式数据流处理和批量数据处理的开源计算平台,提供支持流处理和批处理两种类型应用的功能。
入门篇大纲 放弃篇大纲