Flink从入门到放弃(入门篇3)-DataSetAPI

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 首先我们来看一下编程结构:编程结构public class SocketTextStreamWordCount { public static void main(String[] args) throws Exception { if (args.

首先我们来看一下编程结构:

编程结构

public class SocketTextStreamWordCount {

    public static void main(String[] args) throws Exception {
        if (args.length != 2){
System.err.println("USAGE:\nSocketTextStreamWordCount <hostname> <port>");
            return;
        }
        String hostName = args[0];
        Integer port = Integer.parseInt(args[1]);
        final StreamExecutionEnvironment env = StreamExecutionEnvironment
                .getExecutionEnvironment();
        DataStream<String> text = env.socketTextStream(hostName, port);

        DataStream<Tuple2<String, Integer>> counts 
        text.flatMap(new LineSplitter())
                .keyBy(0)
                .sum(1);
        counts.print();
        env.execute("Java WordCount from SocketTextStream Example");
    }

上面的SocketTextStreamWordCount是一个典型的Flink程序,他由一下及格部分构成:

  • 获得一个execution environment,
  • 加载/创建初始数据,
  • 指定此数据的转换,
  • 指定放置计算结果的位置,
  • 触发程序执行

DataSet API

分类:

  • Source: 数据源创建初始数据集,例如来自文件或Java集合
  • Transformation: 数据转换将一个或多个DataSet转换为新的DataSet
  • Sink: 将计算结果存储或返回

DataSet Sources

基于文件的

  • readTextFile(path)/ TextInputFormat- 按行读取文件并将其作为字符串返回。
  • readTextFileWithValue(path)/ TextValueInputFormat- 按行读取文件并将它们作为StringValues返回。StringValues是可变字符串。
  • readCsvFile(path)/ CsvInputFormat- 解析逗号(或其他字符)分隔字段的文件。返回元组或POJO的DataSet。支持基本java类型及其Value对应作为字段类型。
  • readFileOfPrimitives(path, Class)/ PrimitiveInputFormat- 解析新行(或其他字符序列)分隔的原始数据类型(如String或)的文件Integer。
  • readFileOfPrimitives(path, delimiter, Class)/ PrimitiveInputFormat- 解析新行(或其他字符序列)分隔的原始数据类型的文件,例如String或Integer使用给定的分隔符。
  • readSequenceFile(Key, Value, path)/ SequenceFileInputFormat- 创建一个JobConf并从类型为SequenceFileInputFormat,Key class和Value类的指定路径中读取文件,并将它们作为Tuple2 返回。

基于集合

  • fromCollection(Collection) - 从Java Java.util.Collection创建数据集。集合中的所有数据元必须属于同一类型。
  • fromCollection(Iterator, Class) - 从迭代器创建数据集。该类指定迭代器返回的数据元的数据类型。
  • fromElements(T ...) - 根据给定的对象序列创建数据集。所有对象必须属于同一类型。
  • fromParallelCollection(SplittableIterator, Class) - 并行地从迭代器创建数据集。该类指定迭代器返回的数据元的数据类型。
  • generateSequence(from, to) - 并行生成给定间隔中的数字序列。

通用方法

  • readFile(inputFormat, path)/ FileInputFormat- 接受文件输入格式。
  • createInput(inputFormat)/ InputFormat- 接受通用输入格式。

代码示例

ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();

// 从本地文件系统读
DataSet<String> localLines = env.readTextFile("file:///path/to/my/textfile");

// 读取HDFS文件
DataSet<String> hdfsLines = env.readTextFile("hdfs://nnHost:nnPort/path/to/my/textfile");

// 读取CSV文件
DataSet<Tuple3<Integer, String, Double>> csvInput = env.readCsvFile("hdfs:///the/CSV/file").types(Integer.class, String.class, Double.class);

// 读取CSV文件中的部分
DataSet<Tuple2<String, Double>> csvInput = env.readCsvFile("hdfs:///the/CSV/file").includeFields("10010").types(String.class, Double.class);

// 读取CSV映射为一个java类
DataSet<Person>> csvInput = env.readCsvFile("hdfs:///the/CSV/file").pojoType(Person.class, "name", "age", "zipcode");

// 读取一个指定位置序列化好的文件
DataSet<Tuple2<IntWritable, Text>> tuples =
 env.readSequenceFile(IntWritable.class, Text.class, "hdfs://nnHost:nnPort/path/to/file");

// 从输入字符创建
DataSet<String> value = env.fromElements("Foo", "bar", "foobar", "fubar");

// 创建一个数字序列
DataSet<Long> numbers = env.generateSequence(1, 10000000);

// 从关系型数据库读取
DataSet<Tuple2<String, Integer> dbData =
env.createInput(JDBCInputFormat.buildJDBCInputFormat()                    .setDrivername("org.apache.derby.jdbc.EmbeddedDriver")                   .setDBUrl("jdbc:derby:memory:persons")
.setQuery("select name, age from persons")
.setRowTypeInfo(new RowTypeInfo(BasicTypeInfo.STRING_TYPE_INFO, BasicTypeInfo.INT_TYPE_INFO))
.finish());

DataSet Transformation

详细可以参考官网:https://flink.sojb.cn/dev/batch/dataset_transformations.html#filter

  • Map

采用一个数据元并生成一个数据元。

data.map(new MapFunction<String, Integer>() {
  public Integer map(String value) { return Integer.parseInt(value); }
});
  • FlatMap

采用一个数据元并生成零个,一个或多个数据元。

data.flatMap(new FlatMapFunction<String, String>() {
  public void flatMap(String value, Collector<String> out) {
    for (String s : value.split(" ")) {
      out.collect(s);
    }
  }
});
  • MapPartition

在单个函数调用中转换并行分区。该函数将分区作为Iterable流来获取,并且可以生成任意数量的结果值。每个分区中的数据元数量取决于并行度和先前的 算子操作。

data.mapPartition(new MapPartitionFunction<String, Long>() {
  public void mapPartition(Iterable<String> values, Collector<Long> out) {
    long c = 0;
    for (String s : values) {
      c++;
    }
    out.collect(c);
  }
});
  • Filter

计算每个数据元的布尔函数,并保存函数返回true的数据元。
重要信息:系统假定该函数不会修改应用谓词的数据元。违反此假设可能会导致错误的结果。

data.filter(new FilterFunction<Integer>() {
  public boolean filter(Integer value) { return value > 1000; }
});
  • Reduce

通过将两个数据元重复组合成一个数据元,将一组数据元组合成一个数据元。Reduce可以应用于完整数据集或分组数据集。

data.reduce(new ReduceFunction<Integer> {
  public Integer reduce(Integer a, Integer b) { return a + b; }
});

如果将reduce应用于分组数据集,则可以通过提供CombineHintto 来指定运行时执行reduce的组合阶段的方式 setCombineHint。在大多数情况下,基于散列的策略应该更快,特别是如果不同键的数量与输入数据元的数量相比较小(例如1/10)。

  • ReduceGroup

将一组数据元组合成一个或多个数据元。ReduceGroup可以应用于完整数据集或分组数据集。

data.reduceGroup(new GroupReduceFunction<Integer, Integer> {
  public void reduce(Iterable<Integer> values, Collector<Integer> out) {
    int prefixSum = 0;
    for (Integer i : values) {
      prefixSum += i;
      out.collect(prefixSum);
    }
  }
});
  • Aggregate

将一组值聚合为单个值。聚合函数可以被认为是内置的reduce函数。聚合可以应用于完整数据集或分组数据集。

Dataset<Tuple3<Integer, String, Double>> input = // [...]
DataSet<Tuple3<Integer, String, Double>> output = input.aggregate(SUM, 0).and(MIN, 2);

您还可以使用简写语法进行最小,最大和总和聚合。

Dataset<Tuple3<Integer, String, Double>> input = // [...]
DataSet<Tuple3<Integer, String, Double>> output = input.sum(0).andMin(2);
  • Distinct

返回数据集的不同数据元。它相对于数据元的所有字段或字段子集从输入DataSet中删除重复条目。

data.distinct();

使用reduce函数实现Distinct。您可以通过提供CombineHintto 来指定运行时执行reduce的组合阶段的方式 setCombineHint。在大多数情况下,基于散列的策略应该更快,特别是如果不同键的数量与输入数据元的数量相比较小(例如1/10)。

  • Join

通过创建在其键上相等的所有数据元对来连接两个数据集。可选地使用JoinFunction将数据元对转换为单个数据元,或使用FlatJoinFunction将数据元对转换为任意多个(包括无)数据元。请参阅键部分以了解如何定义连接键。

result = input1.join(input2)
               .where(0)       // key of the first input (tuple field 0)
               .equalTo(1);    // key of the second input (tuple field 1)

您可以通过Join Hints指定运行时执行连接的方式。提示描述了通过分区或广播进行连接,以及它是使用基于排序还是基于散列的算法。
如果未指定提示,系统将尝试估算输入大小,并根据这些估计选择最佳策略。

// This executes a join by broadcasting the first data set
// using a hash table for the broadcast data
result = input1.join(input2, JoinHint.BROADCAST_HASH_FIRST)
               .where(0).equalTo(1);

请注意,连接转换仅适用于等连接。其他连接类型需要使用OuterJoin或CoGroup表示。

  • OuterJoin

在两个数据集上执行左,右或全外连接。外连接类似于常规(内部)连接,并创建在其键上相等的所有数据元对。此外,如果在另一侧没有找到匹配的Keys,则保存“外部”侧(左侧,右侧或两者都满)的记录。匹配数据元对(或一个数据元和null另一个输入的值)被赋予JoinFunction以将数据元对转换为单个数据元,或者转换为FlatJoinFunction以将数据元对转换为任意多个(包括无)数据元。请参阅键部分以了解如何定义连接键。

input1.leftOuterJoin(input2) // rightOuterJoin or fullOuterJoin for right or full outer joins
      .where(0)              // key of the first input (tuple field 0)
      .equalTo(1)            // key of the second input (tuple field 1)
      .with(new JoinFunction<String, String, String>() {
          public String join(String v1, String v2) {
             // NOTE:
             // - v2 might be null for leftOuterJoin
             // - v1 might be null for rightOuterJoin
             // - v1 OR v2 might be null for fullOuterJoin
          }
      });
  • CoGroup

reduce 算子操作的二维变体。将一个或多个字段上的每个输入分组,然后关联组。每对组调用转换函数。

data1.coGroup(data2)
     .where(0)
     .equalTo(1)
     .with(new CoGroupFunction<String, String, String>() {
         public void coGroup(Iterable<String> in1, Iterable<String> in2, Collector<String> out) {
           out.collect(...);
         }
      });
  • Cross

构建两个输入的笛卡尔积(交叉乘积),创建所有数据元对。可选择使用CrossFunction将数据元对转换为单个数据元

DataSet<Integer> data1 = // [...]
DataSet<String> data2 = // [...]
DataSet<Tuple2<Integer, String>> result = data1.cross(data2);

注:交叉是一个潜在的非常计算密集型 算子操作它甚至可以挑战大的计算集群!建议使用crossWithTiny()和crossWithHuge()来提示系统的DataSet大小。

  • Union

生成两个数据集的并集。

DataSet<String> data1 = // [...]
DataSet<String> data2 = // [...]
DataSet<String> result = data1.union(data2);
  • Rebalance

均匀地Rebalance 数据集的并行分区以消除数据偏差。只有类似Map的转换可能会遵循Rebalance 转换。

DataSet<String> in = // [...]
DataSet<String> result = in.rebalance()
                           .map(new Mapper());
                           
  • Hash-Partition

散列分区给定键上的数据集。键可以指定为位置键,表达键和键选择器函数。

DataSet<Tuple2<String,Integer>> in = // [...]
DataSet<Integer> result = in.partitionByHash(0)
                            .mapPartition(new PartitionMapper());
  • Range-Partition

Range-Partition给定键上的数据集。键可以指定为位置键,表达键和键选择器函数。

DataSet<Tuple2<String,Integer>> in = // [...]
DataSet<Integer> result = in.partitionByRange(0)
                            .mapPartition(new PartitionMapper());
  • Custom Partitioning

手动指定数据分区。
注意:此方法仅适用于单个字段键。

DataSet<Tuple2<String,Integer>> in = // [...]
DataSet<Integer> result = in.partitionCustom(Partitioner<K> partitioner, key)
  • Sort Partition

本地按指定顺序对指定字段上的数据集的所有分区进行排序。可以将字段指定为元组位置或字段表达式。通过链接sortPartition()调用来完成对多个字段的排序。

DataSet<Tuple2<String,Integer>> in = // [...]
DataSet<Integer> result = in.sortPartition(1, Order.ASCENDING)
                            .mapPartition(new PartitionMapper());
  • First-n

返回数据集的前n个(任意)数据元。First-n可以应用于常规数据集,分组数据集或分组排序数据集。分组键可以指定为键选择器函数或字段位置键。

DataSet<Tuple2<String,Integer>> in = // [...]
// regular data set
DataSet<Tuple2<String,Integer>> result1 = in.first(3);
// grouped data set
DataSet<Tuple2<String,Integer>> result2 = in.groupBy(0)                                     .first(3);
// grouped-sorted data set
DataSet<Tuple2<String,Integer>> result3 = in.groupBy(0)                                     .sortGroup(1, Order.ASCENDING)                     .first(3);

DataSet Sink

数据接收器使用DataSet用于存储或返回。使用OutputFormat描述数据接收器算子操作 。Flink带有各种内置输出格式,这些格式封装在DataSet上的算子操作中:

  • writeAsText()/ TextOutputFormat- 按字符串顺序写入数据元。通过调用每个数据元的toString()方法获得字符串。
  • writeAsFormattedText()/ TextOutputFormat- 按字符串顺序写数据元。通过为每个数据元调用用户定义的format()方法来获取字符串。
  • writeAsCsv(...)/ CsvOutputFormat- 将元组写为逗号分隔值文件。行和字段分隔符是可配置的。每个字段的值来自对象的toString()方法。
  • print()/ printToErr()/ print(String msg)/ printToErr(String msg)- 在标准输出/标准错误流上打印每个数据元的toString()值。可选地,可以提供前缀(msg),其前缀为输出。这有助于区分不同的打印调用。如果并行度大于1,则输出也将与生成输出的任务的标识符一起添加。
  • write()/ FileOutputFormat- 自定义文件输出的方法和基类。支持自定义对象到字节的转换。
  • output()/ OutputFormat- 大多数通用输出方法,用于非基于文件的数据接收器(例如将结果存储在数据库中)。

可以将DataSet输入到多个 算子操作。程序可以编写或打印数据集,同时对它们执行其他转换。

示例:

// text data
DataSet<String> textData = // [...]

// write DataSet to a file on the local file system
textData.writeAsText("file:///my/result/on/localFS");

// write DataSet to a file on a HDFS with a namenode running at nnHost:nnPort
textData.writeAsText("hdfs://nnHost:nnPort/my/result/on/localFS");

// write DataSet to a file and overwrite the file if it exists
textData.writeAsText("file:///my/result/on/localFS", WriteMode.OVERWRITE);

// tuples as lines with pipe as the separator "a|b|c"
DataSet<Tuple3<String, Integer, Double>> values = // [...]
values.writeAsCsv("file:///path/to/the/result/file", "\n", "|");

// this writes tuples in the text formatting "(a, b, c)", rather than as CSV lines
values.writeAsText("file:///path/to/the/result/file");

// this writes values as strings using a user-defined TextFormatter object
values.writeAsFormattedText("file:///path/to/the/result/file",
    new TextFormatter<Tuple2<Integer, Integer>>() {
        public String format (Tuple2<Integer, Integer> value) {
            return value.f1 + " - " + value.f0;
        }
    });

使用自定义输出格式:

DataSet<Tuple3<String, Integer, Double>> myResult = [...]

// write Tuple DataSet to a relational database
myResult.output(
    // build and configure OutputFormat
    JDBCOutputFormat.buildJDBCOutputFormat()
                    .setDrivername("org.apache.derby.jdbc.EmbeddedDriver")
                    .setDBUrl("jdbc:derby:memory:persons")
                    .setQuery("insert into persons (name, age, height) values (?,?,?)")
                    .finish()
    );

序列化器

  • Flink自带了针对诸如int,long,String等标准类型的序列化器
  • 针对Flink无法实现序列化的数据类型,我们可以交给Avro和Kryo
  • 使用方法:ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
使用avro序列化:env.getConfig().enableForceAvro();
使用kryo序列化:env.getConfig().enableForceKryo();
使用自定义序列化:env.getConfig().addDefaultKryoSerializer(Class<?> type, Class<? extends Serializer<?>> serializerClass)

数据类型

  • Java Tuple 和 Scala case class
  • Java POJOs:java实体类
  • Primitive Types
    默认支持java和scala基本数据类型
  • General Class Types
    默认支持大多数java和scala class
  • Hadoop Writables
    支持hadoop中实现了org.apache.hadoop.Writable的数据类型
  • Special Types
    例如scala中的Either Option 和Try
相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
目录
相关文章
|
8月前
|
Java 流计算
【极数系列】Flink搭建入门项目Demo & 秒懂Flink开发运行原理(05)
【极数系列】Flink搭建入门项目Demo & 秒懂Flink开发运行原理(05)
276 3
|
Java Linux API
flink入门-流处理
flink入门-流处理
167 0
|
存储 Java Linux
10分钟入门Flink--安装
本文介绍Flink的安装步骤,主要是Flink的独立部署模式,它不依赖其他平台。文中内容分为4块:前置准备、Flink本地模式搭建、Flink Standalone搭建、Flink Standalong HA搭建。
10分钟入门Flink--安装
|
分布式计算 Java API
Flink教程(04)- Flink入门案例
Flink教程(04)- Flink入门案例
183 0
|
数据处理 Apache 流计算
实时计算引擎 Flink:从入门到深入理解
本篇详细介绍了Apache Flink实时计算引擎的基本概念和核心功能。从入门到深入,逐步介绍了Flink的数据源与接收、数据转换与计算、窗口操作以及状态管理等方面的内容,并附带代码示例进行实际操作演示。通过阅读本文,读者可以建立起对Flink实时计算引擎的全面理解,为实际项目中的实时数据处理提供了有力的指导和实践基础。
2285 2
|
8月前
|
分布式计算 监控 API
flink 入门编程day02
flink 入门编程day02
|
8月前
|
SQL 关系型数据库 Apache
Apache Doris 整合 FLINK CDC 、Paimon 构建实时湖仓一体的联邦查询入门
Apache Doris 整合 FLINK CDC 、Paimon 构建实时湖仓一体的联邦查询入门
1438 3
|
存储 缓存 分布式计算
Flink教程(02)- Flink入门(下)
Flink教程(02)- Flink入门(下)
126 0
|
SQL 消息中间件 API
Flink教程(02)- Flink入门(上)
Flink教程(02)- Flink入门(上)
223 0
|
分布式计算 大数据 Hadoop
终于学完了阿里云大数据架构师推荐的Flink入门与实战PDF
Flink项目是大数据计算领域冉冉升起的一颗新星。大数据计算引擎的发展经历了几个过程,从第1代的MapReduce,到第2代基于有向无环图的Tez,第3代基于内存计算的Spark,再到第4代的Flink。因为Flink可以基于Hadoop进行开发和使用,所以Flink并不会取代Hadoop,而是和Hadoop紧密结合。
终于学完了阿里云大数据架构师推荐的Flink入门与实战PDF