[大数据之Spark]——Actions算子操作入门实例

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: Actionsreduce(func)Aggregate the elements of the dataset using a function func (which takes two arguments and returns one). The function should be commutative and associative so that it can be computed correctly in parallel.这个方法会传入两个参数,计算这两个参数返回一个结果。

Actions

reduce(func)

Aggregate the elements of the dataset using a function func (which takes two arguments and returns one). The function should be commutative and associative so that it can be computed correctly in parallel.

这个方法会传入两个参数,计算这两个参数返回一个结果。返回的结果与下一个参数一起当做参数继续进行计算。

比如,计算一个数组的和。

//创建数据集scala> var data = sc.parallelize(1 to 3,1)scala> data.collectres6: Array[Int] = Array(1, 2, 3)//collect计算scala> data.reduce((x,y)=>x+y)res5: Int = 6

collect()

Return all the elements of the dataset as an array at the driver program. This is usually useful after a filter or other operation that returns a sufficiently small subset of the data.

返回数据集的所有元素,通常是在使用filter或者其他操作的时候,返回的数据量比较少时使用。

比如,显示刚刚定义的数据集内容。

//创建数据集scala> var data = sc.parallelize(1 to 3,1)scala> data.collectres6: Array[Int] = Array(1, 2, 3)

count()

Return the number of elements in the dataset.

计算数据集的数据个数,一般都是统计内部元素的个数。

//创建数据集scala> var data = sc.parallelize(1 to 3,1)//统计个数scala> data.countres7: Long = 3scala> var data = sc.parallelize(List(("A",1),("B",1)))scala> data.countres8: Long = 2

first()

Return the first element of the dataset (similar to take(1)).

返回数据集的第一个元素,类似take(1)

//创建数据集scala> var data = sc.parallelize(List(("A",1),("B",1)))//获取第一条元素scala> data.firstres9: (String, Int) = (A,1)

take(n)

Return an array with the first n elements of the dataset.

返回数组的头n个元素

//创建数据集scala> var data = sc.parallelize(List(("A",1),("B",1)))scala> data.take(1)res10: Array[(String, Int)] = Array((A,1))//如果n大于总数,则会返回所有的数据scala> data.take(8)res12: Array[(String, Int)] = Array((A,1), (B,1))//如果n小于等于0,会返回空数组scala> data.take(-1)res13: Array[(String, Int)] = Array()scala> data.take(0)res14: Array[(String, Int)] = Array()

takeSample(withReplacement, num, [seed])

Return an array with a random sample of num elements of the dataset, with or without replacement, optionally pre-specifying a random number generator seed.

这个方法与sample还是有一些不同的,主要表现在:

返回具体个数的样本(第二个参数指定)

直接返回array而不是RDD

内部会将返回结果随机打散

//创建数据集scala> var data = sc.parallelize(List(1,3,5,7))data: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at parallelize at :21//随机2个数据scala> data.takeSample(true,2,1)res0: Array[Int] = Array(7, 1)//随机4个数据,注意随机的数据可能是重复的scala> data.takeSample(true,4,1)res1: Array[Int] = Array(7, 7, 3, 7)//第一个参数是是否重复scala> data.takeSample(false,4,1)res2: Array[Int] = Array(3, 5, 7, 1)scala> data.takeSample(false,5,1)res3: Array[Int] = Array(3, 5, 7, 1)

takeOrdered(n, [ordering])

Return the first n elements of the RDD using either their natural order or a custom comparator.

基于内置的排序规则或者自定义的排序规则排序,返回前n个元素

//创建数据集scala> var data = sc.parallelize(List("b","a","e","f","c"))data: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[3] at parallelize at :21//返回排序数据scala> data.takeOrdered(3)res4: Array[String] = Array(a, b, c)

saveAsTextFile(path)

Write the elements of the dataset as a text file (or set of text files) in a given directory in the local filesystem, HDFS or any other Hadoop-supported file system. Spark will call toString on each element to convert it to a line of text in the file.

将数据集作为文本文件保存到指定的文件系统、hdfs、或者hadoop支持的其他文件系统中。

//创建数据集scala> var data = sc.parallelize(List("b","a","e","f","c"))data: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[3] at parallelize at :21//保存为test_data_save文件scala> data.saveAsTextFile("test_data_save")scala> data.saveAsTextFile("test_data_save2",classOf[GzipCodec]):24: error: not found: type GzipCodec data.saveAsTextFile("test_data_save2",classOf[GzipCodec]) ^//引入必要的classscala> import org.apache.hadoop.io.compress.GzipCodecimport org.apache.hadoop.io.compress.GzipCodec//保存为压缩文件scala> data.saveAsTextFile("test_data_save2",classOf[GzipCodec])

查看文件

[xingoo@localhost bin]$ lldrwxrwxr-x. 2 xingoo xingoo 4096 Oct 10 23:07 test_data_savedrwxrwxr-x. 2 xingoo xingoo 4096 Oct 10 23:07 test_data_save2[xingoo@localhost bin]$ cd test_data_save2[xingoo@localhost test_data_save2]$ lltotal 4-rw-r--r--. 1 xingoo xingoo 30 Oct 10 23:07 part-00000.gz-rw-r--r--. 1 xingoo xingoo 0 Oct 10 23:07 _SUCCESS[xingoo@localhost test_data_save2]$ cd ..[xingoo@localhost bin]$ cd test_data_save[xingoo@localhost test_data_save]$ lltotal 4-rw-r--r--. 1 xingoo xingoo 10 Oct 10 23:07 part-00000-rw-r--r--. 1 xingoo xingoo 0 Oct 10 23:07 _SUCCESS[xingoo@localhost test_data_save]$ cat part-00000 baefc

saveAsSequenceFile(path)

Write the elements of the dataset as a Hadoop SequenceFile in a given path in the local filesystem, HDFS or any other Hadoop-supported file system. This is available on RDDs of key-value pairs that implement Hadoop's Writable interface. In Scala, it is also available on types that are implicitly convertible to Writable (Spark includes conversions for basic types like Int, Double, String, etc).

保存为sequence文件

scala> var data = sc.parallelize(List(("A",1),("A",2),("B",1)),3)data: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[21] at parallelize at :22scala> data.saveAsSequenceFile("kv_test")[xingoo@localhost bin]$ cd kv_test/[xingoo@localhost kv_test]$ lltotal 12-rw-r--r--. 1 xingoo xingoo 99 Oct 10 23:25 part-00000-rw-r--r--. 1 xingoo xingoo 99 Oct 10 23:25 part-00001-rw-r--r--. 1 xingoo xingoo 99 Oct 10 23:25 part-00002-rw-r--r--. 1 xingoo xingoo 0 Oct 10 23:25 _SUCCESS

saveAsObjectFile(path)

Write the elements of the dataset in a simple format using Java serialization, which can then be loaded using SparkContext.objectFile().

基于Java序列化保存文件

scala> var data = sc.parallelize(List("a","b","c"))data: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[16] at parallelize at :22scala> data.saveAsObjectFile("str_test")scala> var data2 = sc.objectFile[Array[String]]("str_test")data2: org.apache.spark.rdd.RDD[Array[String]] = MapPartitionsRDD[20] at objectFile at :22scala> data2.collect

countByKey()

Only available on RDDs of type (K, V). Returns a hashmap of (K, Int) pairs with the count of each key.

统计KV中,相同K的V的个数

//创建数据集scala> var data = sc.parallelize(List(("A",1),("A",2),("B",1)))data: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[7] at parallelize at :22//统计个数scala> data.countByKeyres9: scala.collection.Map[String,Long] = Map(B -> 1, A -> 2)

foreach(func)

Run a function func on each element of the dataset. This is usually done for side effects such as updating an Accumulator or interacting with external storage systems.

Note: modifying variables other than Accumulators outside of the foreach() may result in undefined behavior. See Understanding closures for more details.

针对每个参数执行,通常在更新互斥或者与外部存储系统交互的时候使用

// 创建数据集scala> var data = sc.parallelize(List("b","a","e","f","c"))data: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[10] at parallelize at :22// 遍历scala> data.foreach(x=>println(x+" hello"))b helloa helloe hellof helloc hello

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
2月前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
157 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
3月前
|
存储 分布式计算 算法
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
79 0
|
3月前
|
消息中间件 分布式计算 NoSQL
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
54 0
|
2月前
|
SQL 机器学习/深度学习 分布式计算
Spark快速上手:揭秘大数据处理的高效秘密,让你轻松应对海量数据
【10月更文挑战第25天】本文全面介绍了大数据处理框架 Spark,涵盖其基本概念、安装配置、编程模型及实际应用。Spark 是一个高效的分布式计算平台,支持批处理、实时流处理、SQL 查询和机器学习等任务。通过详细的技术综述和示例代码,帮助读者快速掌握 Spark 的核心技能。
106 6
|
2月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
137 2
|
2月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第26天】本文详细探讨了Hadoop与Spark在大数据处理中的协同作用,通过具体案例展示了两者的最佳实践。Hadoop的HDFS和MapReduce负责数据存储和预处理,确保高可靠性和容错性;Spark则凭借其高性能和丰富的API,进行深度分析和机器学习,实现高效的批处理和实时处理。
97 1
|
2月前
|
分布式计算 大数据 OLAP
AnalyticDB与大数据生态集成:Spark & Flink
【10月更文挑战第25天】在大数据时代,实时数据处理和分析变得越来越重要。AnalyticDB(ADB)是阿里云推出的一款完全托管的实时数据仓库服务,支持PB级数据的实时分析。为了充分发挥AnalyticDB的潜力,将其与大数据处理工具如Apache Spark和Apache Flink集成是非常必要的。本文将从我个人的角度出发,分享如何将AnalyticDB与Spark和Flink集成,构建端到端的大数据处理流水线,实现数据的实时分析和处理。
77 1
|
3月前
|
分布式计算 大数据 Apache
利用.NET进行大数据处理:Apache Spark与.NET for Apache Spark
【10月更文挑战第15天】随着大数据成为企业决策和技术创新的关键驱动力,Apache Spark作为高效的大数据处理引擎,广受青睐。然而,.NET开发者面临使用Spark的门槛。本文介绍.NET for Apache Spark,展示如何通过C#和F#等.NET语言,结合Spark的强大功能进行大数据处理,简化开发流程并提升效率。示例代码演示了读取CSV文件及统计分析的基本操作,突显了.NET for Apache Spark的易用性和强大功能。
70 1
|
3月前
|
消息中间件 分布式计算 Kafka
大数据平台的毕业设计02:Spark与实时计算
大数据平台的毕业设计02:Spark与实时计算
131 0
|
3月前
|
存储 分布式计算 算法
大数据-105 Spark GraphX 基本概述 与 架构基础 概念详解 核心数据结构
大数据-105 Spark GraphX 基本概述 与 架构基础 概念详解 核心数据结构
65 0