Flink广播变量

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 广播变量简介在Flink中,同一个算子可能存在若干个不同的并行实例,计算过程可能不在同一个Slot中进行,不同算子之间更是如此,因此不同算子的计算数据之间不能像Java数组之间一样互相访问,而广播变量Broadcast便是解决这种情况的。

广播变量简介

在Flink中,同一个算子可能存在若干个不同的并行实例,计算过程可能不在同一个Slot中进行,不同算子之间更是如此,因此不同算子的计算数据之间不能像Java数组之间一样互相访问,而广播变量Broadcast便是解决这种情况的。

我们可以把广播变量理解为是一个公共的共享变量,我们可以把一个dataset 数据集广播出去,然后不同的task在节点上都能够获取到,这个数据在每个节点上只会存在一份

用法

1:初始化数据
  DataSet<Integer> num = env.fromElements(1, 2, 3)
  2:广播数据
  .withBroadcastSet(toBroadcast, "num");
  3:获取数据
  Collection<Integer> broadcastSet = getRuntimeContext().getBroadcastVariable("num");
  

注意事项

使用广播状态,task 之间不会相互通信

只有广播的一边可以修改广播状态的内容。用户必须保证所有 operator 并发实例上对广播状态的 修改行为都是一致的。或者说,如果不同的并发实例拥有不同的广播状态内容,将导致不一致的结果。

广播状态中事件的顺序在各个并发实例中可能不尽相同

广播流的元素保证了将所有元素(最终)都发给下游所有的并发实例,但是元素的到达的顺序可能在并发实例之间并不相同。因此,对广播状态的修改不能依赖于输入数据的顺序。

所有operator task都会快照下他们的广播状态

在checkpoint时,所有的 task 都会 checkpoint 下他们的广播状态,随着并发度的增加,checkpoint 的大小也会随之增加

广播变量存在内存中

广播出去的变量存在于每个节点的内存中,所以这个数据集不能太大,百兆左右可以接受,Gb不能接受

案例

public class BroadCastTest {

    public static void main(String[] args) throws Exception{
        ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
        //1.封装一个DataSet
        DataSet<Integer> broadcast = env.fromElements(1, 2, 3);
        DataSet<String> data = env.fromElements("a", "b");
        data.map(new RichMapFunction<String, String>() {
            private List list = new ArrayList();
            @Override
            public void open(Configuration parameters) throws Exception {
                // 3. 获取广播的DataSet数据 作为一个Collection
                Collection<Integer> broadcastSet = getRuntimeContext().getBroadcastVariable("number");
                list.addAll(broadcastSet);
            }

            @Override
            public String map(String value) throws Exception {
                return value + ": "+ list;
            }
        }).withBroadcastSet(broadcast, "number") 
            // 2. 广播的broadcast
          .printToErr();//打印到err方便查看
    }
}

输出结果:

a: [1, 2, 3]
b: [1, 2, 3]
相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
目录
相关文章
|
存储 缓存 流计算
Flink / Scala- BroadCast 广播流数据先到再处理 Source 数据
Flink 支持增加 DataStream KeyBy 之后 conncet BroadCastStream 形成 BroadConnectedStream,广播流内数据一般为不间断更新的上下文信息,这里介绍如果等待广播流初始化完毕再处理 Source 数据
1488 0
Flink / Scala- BroadCast 广播流数据先到再处理 Source 数据
|
消息中间件 关系型数据库 MySQL
flink 维表join(一):广播流的使用
flink 维表join(一):广播流的使用
|
SQL 消息中间件 存储
Flink 源码:广播流状态源码解析
Broadcast State 是 Operator State 的一种特殊类型。它的引入是为了支持这样的场景: 一个流的记录需要广播到所有下游任务,在这些用例中,它们用于在所有子任务中维护相同的状态。然后可以在处理第二个流的数据时访问这个广播状态,广播状态有自己的一些特性。 必须定义为一个 Map 结构。
Flink 源码:广播流状态源码解析
|
流计算 Apache 存储
Apache Flink中的广播状态实用指南
自版本1.5.0以来,ApacheFlink提供了一种新的状态类型,称为广播状态(Broadcast State)。在本文中,我们会解释什么是广播状态,并通过一个例子,演示如何将其应用于一个用来评估基于事件流的动态模式的应用程序。
4838 0
|
4月前
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。
|
2月前
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
1379 73
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
|
5天前
|
存储 关系型数据库 BI
实时计算UniFlow:Flink+Paimon构建流批一体实时湖仓
实时计算架构中,传统湖仓架构在数据流量管控和应用场景支持上表现良好,但在实际运营中常忽略细节,导致新问题。为解决这些问题,提出了流批一体的实时计算湖仓架构——UniFlow。该架构通过统一的流批计算引擎、存储格式(如Paimon)和Flink CDC工具,简化开发流程,降低成本,并确保数据一致性和实时性。UniFlow还引入了Flink Materialized Table,实现了声明式ETL,优化了调度和执行模式,使用户能灵活调整新鲜度与成本。最终,UniFlow不仅提高了开发和运维效率,还提供了更实时的数据支持,满足业务决策需求。
zdl
|
2月前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
170 56
|
5月前
|
SQL 消息中间件 Kafka
实时计算 Flink版产品使用问题之如何在EMR-Flink的Flink SOL中针对source表单独设置并行度
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。