暂时未有相关云产品技术能力~
欢迎各位对内容方向及质量提需求,我们尽量满足,将国外优质的内容呈现给大家!
本文汇总了人工智能最受欢迎的10大TED演讲,让你全面了解人工智能和机器学习。
作为一个数据科学家你必须要掌握的四个必备技能,值得每个想要成为数据科学家和已经成为数据科学家的人去学习。
如何判断偏差和方差?我们应该如何降低误差?本文将就这两个问题探讨如何使用学习曲线降低这两个主要误差。
本文从开发者的角度分析2018年AI的趋势:拿来即用的AI领域、算法与技术。例如GANs、ONNX、Zoo、AutoML、语音识别、时间序列分析、NLP、高智能机器人等。
2017年注定是机器学习快速发展的一年,特别是机器学习商业化的成功是的更多的人积极的投入到机器学习的学习当中。机器学习一定会成为未来的技术,让我们看看这项未来的技术现在发展到何种程度。
什么是迁移学习,迁移学习的例子有哪些,在预测建模中如何使用迁移学习?本文将带你一步步深入探讨。
图像识别的新思路:眼睛纵横比,看看大牛如果用这种思路玩转识别眨眼动作!
本文主要讲述如何用少于20行的python代码自动生成经典语录
本文介绍与最流行的深度学习开源软件——tensor flow相关的的最新研究论文,其中包括很多高级模块的介绍,希望能够帮助到IT界的TF BOYS。
历经两个月对深度学习和计算机视觉领域进行探索,获得一些经验与总结。
随着人工智能的发展,越来越多的人开始关注人工智能的安全问题。今年的NIPS多集中人工智能安全上,作者列举了在会议上出现的解决人工智能安全问题的比较不错的论文。
本文主要讲述了如何管理机器学习应用方面的棘手问题
本文是作者在2017年总结自己最喜欢的十个数据可视化项目,涵盖范围广,项目生动、有趣且有深度。读者们可以选择自己感兴趣的项目动手体验一下吧。
回望2017,AI取得了突飞猛进的发展,预见2018,AI将何去何从,听大牛煮酒论AI。
盘点2017年AI领域最具影响力的成就,发布2017 AI成就榜:发现八行星太阳系、击败围棋高手、击败德州扑克高手、自学写代码。
本文总结了2017年医学人工智能领域的相关发展,并对自己2016年预测的结果与2017年的实际情况相比对,说明了医学人工智能领域的发展趋势。
不同的数据集是如何进行迁移学习的?常见的迁移学习策略有哪些?本文一一进行讲解,并分析在何种情况应该使用哪种策略。
机器是如何“长大成人”的呢?让我们一起来探索……
Python已经成为机器学习时代的最受欢迎的语言,业内大牛正在使用什么Python库呢?今天我们就来盘点一下2017年十大最受欢迎的机器学习Python库。
AI并非全能选手,汇总2017年AI出的糗事。
本文使用Masking GAN来对静态的图像中的人物图像进行处理,使其都露出灿烂笑容,堪称魔法。每个程序员都是一个魔法师,你玩过的魔法是什么呢?欢迎留言秀出各自的魔法。
本文作者介绍了2018年摆在人工智能面前的五大难题:理解人类语言,机器人附能,防黑客,玩游戏,辨别是非。如何解决这些问题,让AI继续造福人类社会将成为所有AI从业者的首要任务。
机器学习界最流行的在线课程,技术进阶必备!
采用开源TensorFlow ,创建一个结构简单、功能强大神经网络对图像进行分类。
如何利用神经网络训练自己的反欺诈模型,看看吧~附学习资料~
本文作者通过回顾2017年的数据科学发展路径,为数据科学爱好者汇总了2017年数据科学15大热门GitHub项目。
本文是一篇使用Python语言模拟生物体和食物之间的关系和基于遗传算法进化生物体的实例教程
本文主要是根据亚马逊推出的DeepLens原理,通过树莓派以及检测网络模型YOLO搭建一个用于检测鸟儿的智能摄像头,操作起来简单方便,可实践性强。感兴趣的读者可以按照步骤一步步搭建属于自己的一款智能摄像头吧!
作者认为数据分析师是指能够使用Excel和SQL等工具分析数据,生成报告、图表和建议,但却提供不出代码的人员。作者这篇文章不是抨击分析师的,而是为了解决多数人对于数据分析与数据科学之间的误解。
本文介绍的是基于Keras Tensorflow抽象库建立的迁移学习算法模型,算法简单、易于实现,并且具有很好的效果。
本文讲解梯度爆炸的相关问题,主要从以下三个方面介绍:什么是梯度爆炸,以及在训练过程中梯度爆炸会引发哪些问题、如何知道网络模型是否存在梯度爆炸、如何在网络模型中解决梯度爆炸问题。讲解比较通俗易懂,给出了一些判断梯度爆炸存在的方法及解决方法。
本文讲述Net-Trim:无性能损失的深度神经网络凸精简,修剪掉神经网络中93%的无用神经元,但能保证无任何性能损失。
序列预测问题曾经被认为是数据科学行业最难解决的问题之一,而LSTM则是解决这类问题的必备法宝。本文作者详细的介绍了LSTM的相关理论知识,并在最后为深度学习爱好者提供了一个小例子切实的体验LSTM。
今天的课程将继续讲解如何用Tensorflow构建一个循环神经网络(RNN)来预测股票价格。本教程尝试通过维度映射(embeddings)来预测多个股票的价格。
本文着重探索PCA、NMF、KNN这三种算法在实战中的表现。
在机器学习中我们也许会对分类和回归两个算法有所混淆或者困惑,看完本文相信会有所收获
本篇文章主要介绍如何使用Tensorflow建立循环神经网络来预测股票市场价格。文中有完整代码!
为了使开发者更好的理解其开发的神经网络模型,Keras Python深度学习库提供了可视化神经网络模型的工具。在本文中,作者通过一个小例子,详细的介绍可视化的过程和原因。
TensorFlow是一个开源的机器学习库—对任何人都是开放的。公司、非营利性组织、研究人员和开发人员已经在一些领域使用了TensorFlow。
Kaggle Kernels的本质是什么?我们如何使用它?本文从理论介绍到实例讲解,将Kaggle Kernels完美的展现在你面前……
比特币市场总是让人难以捉摸。比特币价值突然出现高峰和低谷的原因是什么?我们如何预测接下来会发生什么?那就让我们用数据来做一些事情吧。
这是一份关于数据科学、商业分析、大数据、机器学习、算法、数据科学工具和相关程序语言的福利书单。又骗你买书?不,我们还有电子书!心动不如行动,赶快进来看看吧!
本文主要介绍了如何进行图像标注构建深度学习,进而深度学习系统的效率。
对于任何想要学习编程语言的小伙伴来说,选择编程的工具是非常重要的。在编程工具和Python库中的连接中,一直是一个让很多人头疼的问题。文中有彩蛋!!!
开源是技术创新和快速发展的核心。这篇文章向你展示Python机器学习开源项目以及在分析过程中发现的非常有趣的见解和趋势。
深度学习作为机器学习的重要领域,在过去的几年时间里面发挥了巨大的作用。但是随着机器学习在不同领域的深入应用,迁移学习正在成为不可忽视的力量。
为了简化卷积神经网络这个概念,本文将试着基于excel针对在开发深度学习模型过程中所做的运算进行解释。
不管你是一个研究人员,还是开发者,亦或是管理者,想要使用机器学习,需要使用正确的工具来实现。本文介绍了当前最流行15个机器学习框架。
如今,网络上的Python机器学习资源纷繁复杂,使得刚入门的小白们眼花缭乱。究竟从哪里开始?如何进行?读完这篇文章,相信你就会有自己的答案。
人工神经网络现在非常流行,它应用于图像识别、自然语言处理和自动驾驶汽车等各个领域。作者是一名专业的数据科学家,他写下这篇文章,希望能帮助其他人了解人工神经网络。