暂时未有相关云产品技术能力~
欢迎各位对内容方向及质量提需求,我们尽量满足,将国外优质的内容呈现给大家!
本文介绍了五种解构复杂系统的常用模型,分别为思维导图、概念导图、系统导图、心智模型以及概念模型;针对每种模型,作者给出了相关的制作规则以及案例,读者可以根据自身情况选择合适的模型,对复杂系统进行更深入的了解。
本文描写了百度硅谷人工智能实验室在深度学习框架中引入HPC技术的实践,通过对OpenMPI里ring all-reduce算法进行改进,使语音识别训练模型的性能得到数十倍的提升,最后百度开源了其实现,希望更多的人受益。
2016年似乎每天在深入学习研究方面都有一个新的巨大的突破。在医疗上 AI正在逐步发展,那么具体的应用还需要多久呢?
本文整理quora论坛的主题——如何开始学习TensorFlow,16位资深行业者给出了相关的建议以及对应的学习资料链接。读者可以根据自身情况参考合适的建议,是一份不可多得的学习TensorFlow的指南。
梯度提升方法(Gradient Boosting)在众多机器学习竞赛中有着广泛的应用。本文介绍了梯度提升的基本概念,并结合实例讨论了梯度提升方法在实践中应用。
随着深度学习的流行,循环神经网络也随之受到了业内人士的广泛关注。目前该技术已经在自然语言处理(NLP)中取得了巨大的成功,想了解么?快来看看吧。
本文中我们将学习OpenCV 3.0中引入的OpenCV跟踪API,以及学习OpenCV 3.2中提供的6种不同的跟踪器。
本文在不同语料库下分析了FastText,Word2Vec和WordRank三种词嵌入模型的性能,发现没有单独的一种模型能够用于不同类型NLP任务。
GitHub的可靠性有没有达到SLA的要求?网站近期的SLO又如何?有了GitHub的网站日志以及BigQuery工具的帮助,我们可以更加深入地定义并度量这些指标。在本篇文章中,作者结合Github公开的部分数据,使用BigQuery以及一系列数据可视化方法对Github网站的可靠性展开了分析。
很多人把XGBoost比作屠龙刀,LightGBM比作倚天剑,那么当倚天遇到屠龙,谁更强呢?
本文简单介绍了 Goodfellow 所著的《深度学习》的主要内容,非常透彻地分析了该书的优缺点以及适用群体。想学习深度学习么?快来看看吧。
本文简要讲述了视频向量化,对DeepWalk的算法进行简单的解释。
本文介绍了仿射变换和双线性插值在图片变换中的应用。
对于当前科技圈两大热点人工智能和深度学习,哪一个对我们来说更具指导意义,包含更多干货呢?
对于初涉深度学习的初学者,本文作者根据自己的学习经验,分享了自己的学习笔记,是一份很好的关于深度学习的学习参考
是否为向别人请教问题却不能切中要点而苦恼过?是否为遇到一个问题却表达不出而失望过?别着急,本文可以帮助你提出高质量的问题。
本文适用于没有任何机器学习背景的读者,目标是向艺术家和设计师展示如何使用一个预训练的神经网络并使用简单的Javascript和p5.js库生成交互式的数字作品。教程简单详细,没有任何的公式与推导。
本文概述了学习数据挖掘与数据科学的七个步骤,每一步都给出了详细的学习资源,便于初学者按照指南开展数据挖掘与数据科学的学习。
本文简单介绍如何在windows系统下配置TensorFlow并能使用GPU进行加速运算的过程,文章通俗易懂,更新及时。
正如每个人都知道的那样,写更多的代码是提高编程能力最显著方法。但是我所确信的另外一种可以提高编程能力的方法是与写代码完全相反的。让我们一起来分享这个方法。
谁更胜一筹?--随机搜索 V.S. 网格搜索 随机法和网格法都是常用的、有效的结构优化方法。那么它们两者当中谁更胜一筹呢?在本文中,作者通过有趣的地形搜索实验,找到了答案。
本文介绍了一些深度学习中的常见概念,如梯度、后向传播、ReLU、Dropout、交叉熵与softmax等,以帮助大家快速了解深度学习。
是否在不同的电影中,总是能看到那些熟悉却叫不上名字的演员么,想知道他们之间相互的关系么?本文将带你一步一步地挖掘出他们的关系。想更了解自己的偶像么,那就试试吧。
本篇文章验证了卷积神经网络应用于图像分割领域时存在的一个问题——粗糙的分割结果。根据像素间交叉熵损失的定义,我们在简化的场景下进行了模型的训练,并使用后向传播来更新权重。我们使用条件随机场(CRFs)来解决分割结果粗糙的问题,并取得了很好的效果。本文中的代码注释详细、功能完善,也便于读者阅读。
本篇文章是"机器学习理论"三部曲中的第二部分,主要介绍独立同分布、大数法则及hoeffding不等式等基本数学知识,详细推导了泛化界限及其分解。
对于简单的分布,很多的编程语言都能实现。但对于复杂的分布,是不容易直接抽样的。马尔可夫链蒙特卡罗算法解决了不能通过简单抽样算法进行抽样的问题,是一种实用性很强的抽样算法。本文将简明清晰地讲解马尔可夫链蒙特卡罗算法,带你理解它。
本文重点是围绕Conjugate Gradient(共轭梯度)方法来探讨更优的矩阵分解算法。
该文献主要介绍深度学习网络中语音、文字以及图片这块中的典型神经网络,重点介绍Memory与Attention的发展前沿,分析了几个详细的典型模型,说明Memory与Attention在文字、语音以及图片相关应用中的重要性。
针对Kaggle保险索赔竞赛给定的数据集,本文详细介绍了如何利用python对数据集进行分析并对特种进行预处理操作。以保险索赔竞赛案例和详细的操作步骤,生动形象的讲解了自动预测保险索赔的算法流程。
昨天我做了一个关于人工智能中的偏见的12分钟演讲。首先需要指出,我并不是这方面的专家,其中大部分是通过阅读相关方面的研究文章的总结。 而这篇文章就是对这个演讲的文字描述。
基于图的机器算法学习是一个强大的工具。结合运用模块特性,能够在集合检测中发挥更大作用。本文是基于图的机器算法系列文的第二篇。
Yann Lecun曾将无监督学习比作蛋糕,将监督学习比作蛋糕上的糖霜,声称我们仅懂得如何做糖霜却不知道怎样才能做出蛋糕。在本篇文章中,我们提供了一份训练无监督学习算法的“蛋糕”配方,用来增强卫星图像。
深度卷积神经网络(CNNs)在许多模式识别任务中取得了很大的性能突破, 然而高质量深度模型的发展依赖于大量的尝试,这是由于没有很好的理解深度模型是怎么工作的,在本文中,提出了一个可视化分析系统CNNVis,帮助机器学习专家更好的理解、分析、设计深度卷积神经网络。
利用卷积神经网络(CNN)对卫星影像进行多尺度目标检测,该文是在YOLO模型的基础上改进提出YOLT模型,该方法极大的提高了背景区分,并能够在不同尺度和多个传感器上快速检测出物体。
本次的主题是“word2vec”,主要是总结了Google公司的Mikolov等人关于词向量的工作(以及你可以用它做什么)。
在开始使用机器学习算法之前,我们应该首先熟悉如何使用它们。 而本文就是通过对TensorFlow的一些基本特点的介绍,让你了解它是机器学习类库中的一个不错的选择。
基于图的机器算法学习是一个强大的工具。结合运用模块特性,能够在集合检测中发挥更大作用。