手把手教程:用Python开发一个自然语言处理模型,并用Flask进行部署

本文涉及的产品
NLP自然语言处理_高级版,每接口累计50万次
NLP自然语言处理_基础版,每接口每天50万次
NLP 自学习平台,3个模型定制额度 1个月
简介: 实用性教程!教你如何快速创建一个可用的机器学习程序!

截住到目前为止,我们已经开发了许多机器学习模型,对测试数据进行了数值预测,并测试了结果。实际上,生成预测只是机器学习项目的一部分,尽管它是我认为最重要的部分。今天我们来创建一个用于文档分类、垃圾过滤的自然语言处理模型,使用机器学习来检测垃圾短信文本消息。我们的ML系统工作流程如下:离线训练->将模型作为服务提供->在线预测。

1、通垃圾件和非垃圾训练离线器。

2、经过训练的模型被部署为服务用户的服务

54052a9ae87431f4024af9e1674bc62b1fcc710b

当我们开发机器学习模型时,我们需要考虑如何部署它,即如何使这个模型可供其他用户使用。Kaggle数据科学训练营非常适合学习如何构建和优化模型,但他们并没有教会工程师如何将它们带给其他用户使用,建立模型与实际为人们提供产品和服务之间存在重大差异。

在本文中,我们将重点关注:构建垃圾短信分类的机器学习模型,然后使用Flask(用于构建Web应用程序的Python微框架)为模型创建API。此API允许用户通过HTTP请求利用预测功能。让我们开始吧!

构建ML模型

数据是标记为垃圾邮件或正常邮件的SMS消息的集合,可在此处找到。首先,我们将使用此数据集构建预测模型,以准确分类哪些文本是垃圾邮件。朴素贝叶斯分类器是一种流行的电子邮件过滤统计技术。他们通常使用词袋功能来识别垃圾邮件。因此,我们将使用Naive Bayes定理构建一个简单的消息分类器。

import pandas as pd
import numpy as np
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import classification_report

df = pd.read_csv('spam.csv', encoding="latin-1")
df.drop(['Unnamed: 2', 'Unnamed: 3', 'Unnamed: 4'], axis=1, inplace=True)
df['label'] = df['class'].map({'ham': 0, 'spam': 1})
X = df['message']
y = df['label']
cv = CountVectorizer()
X = cv.fit_transform(X) # Fit the Data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)
#Naive Bayes Classifier
clf = MultinomialNB()
clf.fit(X_train,y_train)
clf.score(X_test,y_test)
y_pred = clf.predict(X_test)
print(classification_report(y_test, y_pred))

2b0af85cf5fd693101335820c2cdf0fb9683dd7a

Naive Bayes分类器不仅易于实现,而且提供了非常好的性能。在训练模型之后,我们都希望有一种方法来保持模型以供将来使用而无需重新训练。为实现此目的,我们添加以下行以将我们的模型保存为.pkl文件供以后使用。

from sklearn.externals import joblib
joblib.dump(clf, 'NB_spam_model.pkl')


们加载并使用保存的模型:

NB_spam_model = open('NB_spam_model.pkl','rb')
clf = joblib.load(NB_spam_model)

上述过程称为“标准格式的持久模型”,即模型以特定的开发语言的特定格式持久存储。下一步就是将模型在一个微服务中提供,该服务的公开端点用来接收来自客户端的请求。

将垃圾件分转换为Web应用程

在上一节中准备好用于对SMS消息进行分类的代码之后,我们将开发一个Web应用程序,该应用程序由一个简单的Web页面组成,该页面具有允许我们输入消息的表单字段。在将消息提交给Web应用程序后,它将在新页面上呈现该消息,从而为我们提供是否为垃圾邮件的结果。

首先,我们为这个项目创建一个名为SMS-Message-Spam-Detector 的文件夹,这是该文件夹中的目录树,接下来我们将解释每个文件。

spam.csv
app.py
templates/
        home.html
        result.html
static/
        style.css
11b1a5c204f197972ec032aaf7bc49f864de2c2d
be22f2c9db865508f2a0e7f3d6e71b4e7111f548
0cecf2d042f3bed2365b8c5d1a03c1585bc7d45d

子目录templates是Flask在Web浏览器中查找静态HTML文件的目录,在我们的例子中,我们有两个html文件:home.htmlresult.html 

app.py

app.py文件包含将由Python解释器执行以运行Flask Web应用程序的主代码,还包含用于对SMS消息进行分类的ML代码:

from flask import Flask,render_template,url_for,request
import pandas as pd 
import pickle
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.externals import joblib


app = Flask(__name__)

@app.route('/')
def home():
	return render_template('home.html')

@app.route('/predict',methods=['POST'])
def predict():
	df= pd.read_csv("spam.csv", encoding="latin-1")
	df.drop(['Unnamed: 2', 'Unnamed: 3', 'Unnamed: 4'], axis=1, inplace=True)
	# Features and Labels
	df['label'] = df['class'].map({'ham': 0, 'spam': 1})
	X = df['message']
	y = df['label']
	
	# Extract Feature With CountVectorizer
	cv = CountVectorizer()
	X = cv.fit_transform(X) # Fit the Data
	from sklearn.model_selection import train_test_split
	X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)
	#Naive Bayes Classifier
	from sklearn.naive_bayes import MultinomialNB

	clf = MultinomialNB()
	clf.fit(X_train,y_train)
	clf.score(X_test,y_test)
	#Alternative Usage of Saved Model
	# joblib.dump(clf, 'NB_spam_model.pkl')
	# NB_spam_model = open('NB_spam_model.pkl','rb')
	# clf = joblib.load(NB_spam_model)

	if request.method == 'POST':
		message = request.form['message']
		data = [message]
		vect = cv.transform(data).toarray()
		my_prediction = clf.predict(vect)
	return render_template('result.html',prediction = my_prediction)



if __name__ == '__main__':
	app.run(debug=True)

1、我们将应用程序作为单个模块运行,因此我们使用参数初始化了一个新的Flask实例,__name__是为了让Flask知道它可以在templates所在的同一目录中找到HTML模板文件夹()。

2、接下来,我们使用route decorator(@app.route('/'))来指定可以触发home 函数执行的URL 。我们的home 函数只是呈现home.htmlHTML文件,该文件位于templates文件夹中。

3、在predict函数内部,我们访问垃圾邮件数据集、预处理文本、进行预测,然后存储模型。我们访问用户输入的新消息,并使用我们的模型对其标签进行预测。

4、我们使用该POST方法将表单数据传输到邮件正文中的服务器。最后,通过debug=Trueapp.run方法中设置参数,进一步激活Flask的调试器。

5、最后,我们使用run函数执行在服务器上的脚本文件,我们需要确保使用if语句 __name__ == '__main__'

home.html

以下home.html将呈现文本表单的文件的内容,用户可以在其中输入消息:


<!DOCTYPE html>
<html>
<head>
	<title>Home</title>
	<!-- <link rel="stylesheet" type="text/css" href="../static/css/styles.css"> -->
	<link rel="stylesheet" type="text/css" href="{{ url_for('static', filename='css/styles.css') }}">
</head>
<body>

	<header>
		<div class="container">
		<div id="brandname">
			Machine Learning App with Flask
		</div>
		<h2>Spam Detector For SMS Messages</h2>
		
	</div>
	</header>

	<div class="ml-container">

		<form action="{{ url_for('predict')}}" method="POST">
		<p>Enter Your Message Here</p>
		<!-- <input type="text" name="comment"/> -->
		<textarea name="message" rows="4" cols="50"></textarea>
		<br/>

		<input type="submit" class="btn-info" value="predict">
		
	</form>
		
	</div>
</body>
</html>
view raw

style.css文件

home.html的head部分,我们将加载styles.css文件,CSS文件是用于确定HTML文档的外观和风格的。styles.css必须保存在一个名为的子目录中static,这是Flask查找静态文件(如CSS)的默认目录。

body{
	font:15px/1.5 Arial, Helvetica,sans-serif;
	padding: 0px;
	background-color:#f4f3f3;
}

.container{
	width:100%;
	margin: auto;
	overflow: hidden;
}

header{
	background:#03A9F4;#35434a;
	border-bottom:#448AFF 3px solid;
	height:120px;
	width:100%;
	padding-top:30px;

}

.main-header{
			text-align:center;
			background-color: blue;
			height:100px;
			width:100%;
			margin:0px;
		}
#brandname{
	float:left;
	font-size:30px;
	color: #fff;
	margin: 10px;
}

header h2{
	text-align:center;
	color:#fff;

}

.btn-info {background-color: #2196F3;
	height:40px;
	width:100px;} /* Blue */
.btn-info:hover {background: #0b7dda;}


.resultss{
	border-radius: 15px 50px;
    background: #345fe4;
    padding: 20px; 
    width: 200px;
    height: 150px;
}

style.css

result.html

我们创建一个result.html文件,该文件将通过函数render_template('result.html', prediction=my_prediction)返回呈现predict,我们在app.py脚本中定义该文件以显示用户通过文本字段提交的文本。result.html文件包含以下内容:


<!DOCTYPE html>
<html>
<head>
	<title></title>
    <link rel="stylesheet" type="text/css" href="{{ url_for('static', filename='css/styles.css') }}">
</head>
<body>
	<header>
		<div class="container">
		<div id="brandname">
			ML App
		</div>
		<h2>Spam Detector For SMS Messages</h2>		
	</div>
	</header>
	<p style="color:blue;font-size:20;text-align: center;"><b>Results for Comment</b></p>
	<div class="results">
		
	{% if prediction == 1%}
	<h2 style="color:red;">Spam</h2>
	{% elif prediction == 0%}
	<h2 style="color:blue;">Not a Spam (It is a Ham)</h2>
	{% endif %}
	</div>
</body>
</html>

result.html

从result.htm文件我们可以看到一些代码使用通常在HTML文件中找不到的语法例如,{% if prediction ==1%},{% elif prediction == 0%},{% endif %}这是jinja语法,它用于访问从HTML文件中请求返回的预测。

我们就要大功告成了!

完成上述所有操作后,你可以通过双击appy.py 或从终端执行命令来开始运行API :

cd SMS-Message-Spam-Detector
python app.py

应该得到以下出:

 aea29af1be330b04c9cb6c0040c304ff315ffd57

现在你可以打开Web浏览器并导航到http://127.0.0.1:5000/,你应该看到一个简单的网站,内容如下:

 cd2492a10bbc10ad28c3bad3fea49dc2a6553a6f

恭喜!我们现在以零成本的代价创建了端到端机器学习(NLP)应用程序。如果你回顾一下,其实整个过程根本不复杂。有点耐心和渴望学习的动力,任何人都可以做到。所有开源工具都使每件事都成为可能。

更重要的是,我们能够将我们对机器学习理论的知识扩展到有用和实用的Web应用程序!

完整的工作源代码可在此存储库中找到,祝你度过愉快的一周!

本文由阿里云云栖社区组织翻译。
文章原标题《develop-a-nlp-model-in-python-deploy-it-with-flask-step-by-step》作者:Susan Li,加拿大数据科学家

译者:乌拉乌拉 审校:

文章为简译,更为详细的内容,请查看原文

相关文章
|
2月前
|
存储 监控 算法
淘宝买家秀 API开发实录Python(2025)
本文讲述了作者在电商开发领域,尤其是对接淘宝买家秀 API 接口过程中所经历的挑战与收获。从申请接入、签名验证、频率限制到数据处理和实时监控,作者分享了多个实战经验与代码示例,帮助开发者更高效地获取和处理买家秀数据,提升开发效率。
|
10天前
|
设计模式 人工智能 API
AI智能体开发实战:17种核心架构模式详解与Python代码实现
本文系统解析17种智能体架构设计模式,涵盖多智能体协作、思维树、反思优化与工具调用等核心范式,结合LangChain与LangGraph实现代码工作流,并通过真实案例验证效果,助力构建高效AI系统。
145 7
|
2月前
|
算法 程序员 API
电商程序猿开发实录:淘宝商品python(2)
本文分享了开发者在对接淘宝商品详情API过程中的真实经历,涵盖权限申请、签名验证、限流控制、数据解析及消息订阅等关键环节,提供了实用的Python代码示例,帮助开发者高效调用API,提升系统稳定性与数据处理能力。
|
3月前
|
机器学习/深度学习 数据安全/隐私保护 计算机视觉
过三色刷脸技术,过三色刷脸技术教程,插件过人脸python分享学习
三色刷脸技术是基于RGB三通道分离的人脸特征提取方法,通过分析人脸在不同颜色通道的特征差异
|
3月前
|
XML Linux 区块链
Python提取Word表格数据教程(含.doc/.docx)
本文介绍了使用LibreOffice和python-docx库处理DOC文档表格的方法。首先需安装LibreOffice进行DOC到DOCX的格式转换,然后通过python-docx读取和修改表格数据。文中提供了详细的代码示例,包括格式转换函数、表格读取函数以及修改保存功能。该方法适用于Windows和Linux系统,解决了老旧DOC格式文档的处理难题,为需要处理历史文档的用户提供了实用解决方案。
179 0
|
3月前
|
数据采集 存储 数据库
Python爬虫开发:Cookie池与定期清除的代码实现
Python爬虫开发:Cookie池与定期清除的代码实现
|
2月前
|
数据采集 索引 Python
Python Slice函数使用教程 - 详解与示例 | Python切片操作指南
Python中的`slice()`函数用于创建切片对象,以便对序列(如列表、字符串、元组)进行高效切片操作。它支持指定起始索引、结束索引和步长,提升代码可读性和灵活性。
|
4月前
|
存储 算法 数据可视化
用Python开发猜数字游戏:从零开始的手把手教程
猜数字游戏是编程入门经典项目,涵盖变量、循环、条件判断等核心概念。玩家通过输入猜测电脑生成的随机数,程序给出提示直至猜中。项目从基础实现到功能扩展,逐步提升难度,适合各阶段Python学习者。
206 0
|
数据可视化 IDE 开发工具
【Python篇】PyQt5 超详细教程——由入门到精通(中篇二)
【Python篇】PyQt5 超详细教程——由入门到精通(中篇二)
814 13

热门文章

最新文章

推荐镜像

更多