人工智能平台PAI
人工智能平台 PAI(Platform for AI,原机器学习平台PAI)是面向开发者和企业的机器学习/深度学习工程平台,提供包含数据标注、模型构建、模型训练、模型部署、推理优化在内的AI开发全链路服务,内置140+种优化算法,具备丰富的行业场景插件,为用户提供低门槛、高性能的云原生AI工程化能力。
快速玩转 Llama2!机器学习 PAI 最佳实践(三)—快速部署WebUI
本实践将采用阿里云机器学习平台PAI-EAS 模块针对 Llama-2-13B-chat 进行部署。PAI-EAS是模型在线服务平台,支持将模型一键部署为在线推理服务或AI-Web应用,具备弹性扩缩的特点,适合需求高性价比模型服务的开发者。
快速玩转 Llama2!机器学习 PAI 最佳实践(二)—全参数微调训练
本实践将采用阿里云机器学习平台PAI-DSW模块针对 Llama-2-7B-Chat 进行全参数微调。PAI-DSW是交互式建模平台,该实践适合需要定制化微调模型,并追求模型调优效果的开发者。
快速玩转 Llama2 机器学习 PAI 最佳实践(一)低代码 Lora 微调及部署
采用阿里云机器学习平台PAI-快速开始模块针对 Llama-2-7b-chat 进行开发。PAI-快速开始支持基于开源模型的低代码训练、布署和推理全流程,适合想要快速开箱体验预训练模型的开发者。
快速玩转 Llama2!阿里云机器学习 PAI 推出最佳实践
近期,Meta 宣布大语言模型 Llama2 开源,阿里云机器学习平台PAI针对 Llama2 系列模型进行适配,推出全量微调、Lora微调、分布式训练、推理服务等场景最佳实践,助力AI开发者快速开箱。
一种可分批此训练的聚类方法
本文介绍了如何将大数据集划分成若干子集,并对每个子集进行聚类分析。为了确保聚类结果的准确性,需要保证每个子集的数据分布相似。文章提出了一种称为“K-均值距离法”的聚类算法,能够有效地解决数据分布不均匀的问题。本篇文章主要介绍了如何将大数据集划分成若干子集,并对每个子集进行聚类分析。在进行子集划分时,需要保证每个子集的数据分布相似,以保证聚类结果的准确性。文章介绍了一种称为“K-均值距离法”的聚类算法,可以有效地解决数据分布不均匀的问题。