金融新闻分析笔记:基于文本理解的实时分析
本文介绍了一个自动化处理财经资讯文本的实践方案,包括网页数据提取、板块归类、文本情绪评估,并整理为结构化表格,形成预警机制工具。通过模拟信息处理者行为,实现实时决策支持,解决手动阅读资讯无法满足实时决策的问题。
淘宝API系列:淘宝商品详情接口详解
淘宝商品详情接口是淘宝开放平台的核心服务之一,支持开发者通过编程获取商品的标题、价格、销量、描述、图片、视频及SKU信息。广泛应用于电商数据分析、价格监控、竞品分析和自动化工具开发,助力企业提升运营效率与市场竞争力。
Python AutoML框架选型攻略:7个工具性能对比与应用指南
本文系统介绍了主流Python AutoML库的技术特点与适用场景,涵盖AutoGluon、PyCaret、TPOT、Auto-sklearn、H2O AutoML及AutoKeras等工具,帮助开发者根据项目需求高效选择自动化机器学习方案。
一个完整 Java 项目常包含的各层次详解与全面解析
本内容介绍了Java项目的典型分层架构,涵盖开放接口层、终端显示层、Web层、Service层、Manager层、Mapper层及常用辅助层次,如实体层、DTO层、VO层等。通过合理划分各层职责,结合Spring Boot等框架,实现系统的高内聚、低耦合,提升可维护性与扩展性,适用于微服务与MVC架构设计。
大数据集特征工程实践:将54万样本预测误差降低68%的技术路径与代码实现详解
本文通过实际案例演示特征工程在回归任务中的应用效果,重点分析包含数值型、分类型和时间序列特征的大规模表格数据集的处理方法。
Java 8 + 中 Lambda 表达式与 Stream API 的应用解析
摘要:本文介绍了Java 8+核心新特性,包括Lambda表达式与Stream API的集合操作(如过滤统计)、函数式接口的自定义实现、Optional类的空值安全处理、接口默认方法与静态方法的扩展能力,以及Java 9模块化系统的组件管理。每个特性均配有典型应用场景和代码示例,如使用Stream统计字符串长度、Optional处理Map取值、模块化项目的依赖声明等,帮助开发者掌握现代Java的高效编程范式。(150字)
HarmonyOS实战:打造极简HEventBus事件通知
本文介绍了在鸿蒙开发中实现类似EventBus的HEventBus工具,支持事件注册、反注册及多处接收等功能,适用于页面间通信。内容包含单例模式实现、事件管理与消息发送机制,适合日常开发使用。
2025 年最新 40 个 Java 基础核心知识点全面梳理一文掌握 Java 基础关键概念
本文系统梳理了Java编程的40个核心知识点,涵盖基础语法、面向对象、集合框架、异常处理、多线程、IO流、反射机制等关键领域。重点包括:JVM运行原理、基本数据类型、封装/继承/多态三大特性、集合类对比(ArrayList vs LinkedList、HashMap vs TreeMap)、异常分类及处理方式、线程创建与同步机制、IO流体系结构以及反射的应用场景。这些基础知识是Java开发的根基,掌握后能为后续框架学习和项目开发奠定坚实基础。文中还提供了代码资源获取方式,方便读者进一步实践学习。
HarmonyOS实战:GIF图下载突破5M限制保存到相册
本文介绍了在鸿蒙开发中解决图片下载问题的方法,包括突破5M流限制及识别图片真实格式(如GIF)。通过分段下载和类型判断,有效解决了大图下载失败及格式错误问题,适合开发者参考实践。
Arctic长序列训练技术:百万级Token序列的可扩展高效训练方法
Arctic长序列训练(Arctic Long Sequence Training, ALST)技术能够在4个H100节点上对Meta的Llama-8B模型进行高达1500万token序列的训练,使得长序列训练在标准GPU集群甚至单个GPU上都能实现快速、高效且易于部署的执行。
体育动画直播是怎么做出来的?从数据到虚拟赛场的科技魔法!
体育动画直播,融合实时数据、AI与游戏引擎,将比赛转化为虚拟视觉盛宴。无需真实球员,梅西也能带球突破;足球赛变动画,数据却百分百真实。本文揭秘其制作全流程:从数据采集、3D建模,到动画生成与实时渲染,带你了解这项黑科技如何让赛事“活”起来。看电竞选手虚拟形象同步操作,观历史经典赛重现辉煌时刻,未来更有VR沉浸式体验与全息直播!
电商媒体必看:淘宝商品评论接口指南
获取淘宝商品评论数据主要有两种方式:一是通过淘宝开放平台申请接口权限,调用API获取;二是使用爬虫技术抓取。前者需传递商品ID等参数并解析JSON响应,后者则需编写Python代码,配合代理IP与频率控制以应对反爬机制。
FFA 2025 新加坡站全议程上线|The Future of AI is Real-Time
Flink Forward Asia 2025将于7月3日在新加坡举办,主题为“实时智能的未来”。大会聚焦实时AI、实时湖仓与实时分析,展示Apache Flink及社区项目如Paimon、Fluss的最新成果。来自阿里云、AWS、TikTok等企业专家将分享洞见,现场及直播观众均可参与互动抽奖,共襄技术盛宴。
垃圾分类管理系统基于 Spring Boot Vue 3 微服务架构实操指南
本文介绍了基于Java技术的垃圾分类管理系统开发方案与实施案例。系统采用前后端分离架构,后端使用Spring Boot框架搭配MySQL数据库,前端可选择Vue.js或Java Swing实现。核心功能模块包括垃圾分类查询、科普教育、回收预约等。文中提供了两个典型应用案例:彭湖花园小区使用的Swing桌面系统和基于Spring Boot+Vue的城市管理系统,分别满足不同场景需求。最新技术方案升级为微服务架构,整合Spring Cloud、Redis、Elasticsearch等技术,并采用Docker容器
小模型当老师效果更好:借助RLTs方法7B参数击败671B,训练成本暴降99%
强化学习教师模型代表了训练推理语言模型的范式转变。通过从答案开始并专注于解释生成,RLT将训练过程转化为师生协作游戏,实现多方共赢:教师学会有效教学,学生从定制化课程中受益,工程师获得性能更好且成本更低的模型解决方案。
电商媒体必看:淘宝天猫商品详情接口指南
淘宝商品详情接口是淘宝开放平台的重要API,用于获取商品基础信息、描述、图片视频、SKU属性及评价数据。适用于电商分析、价格监控等场景。需先申请权限再调用。
云上AI推理平台全掌握 (1):PAI-EAS LLM服务一键压测
在AI技术飞速发展的今天,大语言模型(LLM)、多模态模型等前沿技术正深刻改变行业格局。推理服务是大模型从“实验室突破”走向“产业级应用”的必要环节,需直面高并发流量洪峰、低延时响应诉求、异构硬件优化适配、成本精准控制等复杂挑战。 阿里云人工智能平台 PAI 致力于为用户提供全栈式、高可用的推理服务能力。在本系列技术专题中,我们将围绕分布式推理架构、Serverless 弹性资源全球调度、压测调优和服务可观测等关键技术方向,展现 PAI 平台在推理服务侧的产品能力,助力企业和开发者在 AI 时代抢占先机,让我们一起探索云上 AI 推理的无限可能,释放大模型的真正价值!
OpenFeature 实战:统一特征开关在风控模型的落地与灰度发布方案
在金融风控场景中,模型迭代速度与线上稳定性之间的平衡是一大挑战。传统硬编码方式存在耦合度高、控制粒度粗、缺乏审计等问题,导致误拦截损失显著。本文介绍了基于 OpenFeature 的解决方案,通过动态配置、细粒度控制和多语言支持实现高效特征管理,并结合灰度发布、熔断机制和安全审计提升系统稳定性与发布安全性。实战数据显示,该方案显著缩短上线周期、降低故障率并提升模型覆盖率,具备高可用性和可扩展性,适用于复杂风控环境下的策略迭代需求。
大模型推理加速实战:vLLM 部署 Llama3 的量化与批处理优化指南
本文详解如何通过量化与批处理优化,在vLLM中高效部署Llama3大模型。涵盖内存管理、推理加速及混合策略,提升吞吐量并降低延迟,适用于大规模语言模型部署实践。
机器学习模型监控警报系统设计:Prometheus+Evidently 实战教程
本系统采用Prometheus与Evidently双引擎架构,实现从数据采集、智能分析到精准告警的全流程监控。通过时序数据与模型分析深度集成,支持数据漂移检测、性能评估及根因分析,结合Grafana可视化与Alertmanager智能路由,构建高可用、低延迟的监控体系,显著提升异常检测能力与系统稳定性。
基于 Flink + Redis 的实时特征工程实战:电商场景动态分桶计数实现
本文介绍了基于 Flink 与 Redis 构建的电商场景下实时特征工程解决方案,重点实现动态分桶计数等复杂特征计算。通过流处理引擎 Flink 实时加工用户行为数据,结合 Redis 高性能存储,满足推荐系统毫秒级特征更新需求。技术架构涵盖状态管理、窗口计算、Redis 数据模型设计及特征服务集成,有效提升模型预测效果与系统吞吐能力。
5倍加速!PAI-EAS在线服务优化:ResNet50模型推理性能调优指南
本文系统分析ResNet50推理性能瓶颈,结合TensorRT加速、模型剪枝、批量推理及CUDA多流并行等技术,实现吞吐量提升56.7倍、延迟降低至22ms,同时优化GPU利用率与服务稳定性,提供完整的生产部署验证方案。
特征存储避坑指南:对比 Feast/Hopsworks 在金融风控场景的落地实践
金融风控场景对特征存储系统有严苛要求,包括低延迟、强一致性、多源数据处理及合规性。本文对比Feast与Hopsworks两大平台的实战经验,解析其在特征服务优化、版本控制、性能调优等方面的优势与陷阱,并提出混合架构方案兼顾实时性与计算效率。通过实践验证,可显著提升系统性能并降低成本。
用 Spark 优化亿级用户画像计算:Delta Lake 增量更新策略详解
在亿级用户画像计算中,传统全量更新面临数据量大、更新频繁、延迟敏感等挑战。本文详解如何结合 Spark 与 Delta Lake 实现高效增量更新,通过仅处理变化数据,显著降低资源消耗并提升实时性,助力构建高性能用户画像系统。
实时异常检测实战:Flink+PAI 算法模型服务化架构设计
本文深入探讨了基于 Apache Flink 与阿里云 PAI 构建的实时异常检测系统。内容涵盖技术演进、架构设计、核心模块实现及金融、工业等多领域实战案例,解析流处理、模型服务化、状态管理等关键技术,并提供性能优化与高可用方案,助力企业打造高效智能的实时异常检测平台。
企业级MLOps落地:基于PAI-Studio构建自动化模型迭代流水线
本文深入解析MLOps落地的核心挑战与解决方案,涵盖技术断层分析、PAI-Studio平台选型、自动化流水线设计及实战构建,全面提升模型迭代效率与稳定性。
避坑指南:PAI-DLC分布式训练BERT模型的3大性能优化策略
本文基于电商搜索场景下的BERT-Large模型训练优化实践,针对数据供给、通信效率与计算资源利用率三大瓶颈,提出异步IO流水线、梯度压缩+拓扑感知、算子融合+混合精度等策略。实测在128卡V100集群上训练速度提升3.2倍,GPU利用率提升至89.3%,训练成本降低70%。适用于大规模分布式深度学习任务的性能调优。
阿里云PAI AutoML实战:20分钟构建高精度电商销量预测模型
本文介绍了如何利用阿里云 PAI AutoML 平台,在20分钟内构建高精度的电商销量预测模型。内容涵盖项目背景、数据准备与预处理、模型训练与优化、部署应用及常见问题解决方案,助力企业实现数据驱动的精细化运营,提升市场竞争力。
PAI-TurboX:面向自动驾驶的训练推理加速框架
PAI-TurboX 为自动驾驶场景中的复杂数据预处理、离线大规模模型训练和实时智能驾驶推理,提供了全方位的加速解决方案。PAI-Notebook Gallery 提供PAI-TurboX 一键启动的 Notebook 最佳实践
Post-Training on PAI (1):一文览尽开源强化学习框架在PAI平台的应用
Post-Training(即模型后训练)作为大模型落地的重要一环,能显著优化模型性能,适配特定领域需求。相比于 Pre-Training(即模型预训练),Post-Training 阶段对计算资源和数据资源需求更小,更易迭代,因此备受推崇。近期,我们将体系化地分享基于阿里云人工智能平台 PAI 在强化学习、模型蒸馏、数据预处理、SFT等方向的技术实践,旨在清晰地展现 PAI 在 Post-Training 各个环节的产品能力和使用方法,欢迎大家随时交流探讨。
基于Dyna-Q强化学习的智能营销系统:融合贝叶斯生存模型与Transformer注意力机制的电商客户重参与策略优化
本文提出了一个集成三种核心技术的下一代智能优惠券分发系统:基于贝叶斯生存模型的重购概率预测、采用注意力机制的Transformer利润预测模型,以及用于策略持续优化的Dyna-Q强化学习代理。
Java 大视界 —— Java 大数据在智慧交通停车场智能管理与车位预测中的应用实践(174)
本文围绕 Java 大数据在智慧交通停车场智能管理与车位预测中的应用展开,深入剖析行业痛点,系统阐述大数据技术的应用架构,结合大型体育中心停车场案例,展示系统实施过程与显著成效,提供极具实操价值的技术方案。
Java 大视界 —— 基于 Java 的大数据分布式计算在气象数据处理与天气预报中的应用进展(176)
本文围绕基于 Java 的大数据分布式计算在气象数据处理与天气预报中的应用展开,剖析行业现状与挑战,阐释技术原理,介绍其在数据处理及天气预报中的具体应用,并结合实际案例展示实施效果。
Java 大视界 ——Java 大数据在智能供应链库存优化与成本控制中的应用策略(172)
本文围绕 Java 大数据在智能供应链库存优化与成本控制中的应用展开,剖析库存管理现状与挑战,阐述大数据技术应用策略,结合真实案例与代码给出实操方案,助力企业提升库存管理效能,降低运营成本。
解决语义搜索痛点,基于对比学习的领域特定文本嵌入模型微调实践
本文深入探讨了基于对比学习的嵌入模型微调技术,并通过AI职位匹配的实际案例验证了该方法的有效性。微调后的模型在测试集上实现了100%的准确率,充分证明了针对特定领域进行模型优化的必要性和可行性。
跨境卖家必看:1688商品列表页面数据接口抓取攻略
1688平台提供商品列表数据接口(1688.item_search),支持通过关键词搜索商品,返回商品ID、标题、价格、销量、图片等信息。参数包括关键词q、页码page、每页数量page_size等。开发者需注意签名机制与调用频率限制,确保稳定获取数据。
Java 入门循环结构基础知识点详解
摘要:本文介绍了Java现代循环技术的进阶应用,包括Stream API、响应式编程和模式匹配,展示了如何用Stream API替代传统循环进行声明式集合处理(如过滤、映射和并行计算),以及响应式编程在异步非阻塞场景下的优势。文章还通过电商订单处理系统的案例演示了这些技术的综合应用,并提供了性能优化建议,如合理使用并行处理和避免循环内对象创建。这些现代特性使Java代码更简洁、高效,更适合高并发和I/O密集型场景。
大数据与机器学习
大数据领域前沿技术分享与交流,这里不止有技术干货、学习心得、企业实践、社区活动,还有未来。