
开启云上 AIGC 动手实践,探索技术创意
面向 GenAI 时代,阿里云人工智能平台 PAI 平台自带海量开箱即用、实时更新的大模型最佳实践,提供高性能、高稳定的大模型工程化能力。本电子书精选 2024 云栖大会动手实践教程,覆盖大语言模型应用、多模态大模型微调训练、低代码 AIGC 创意设计等热门领域,为您带来 AIGC 开发全新体验。
别再用均值填充了!MICE算法教你正确处理缺失数据
MICE是一种基于迭代链式方程的缺失值插补方法,通过构建后验分布并生成多个完整数据集,有效量化不确定性。相比简单填补,MICE利用变量间复杂关系,提升插补准确性,适用于多变量关联、缺失率高的场景。本文结合PMM与线性回归,详解其机制并对比效果,验证其在统计推断中的优势。
七、Sqoop Job:简化与自动化数据迁移任务及免密执行
平时用 Sqoop 导入导出时,命令一长就容易出错,特别是增量任务还得记 last-value,很麻烦。其实 Sqoop 有 Job 功能,能把命令“存档”,以后直接 --exec 执行,配合调度工具特别省心。本文手把手讲 Job 创建、管理、免密执行技巧(密码文件、Credential Provider),还带实战例子,搞完你就能写出稳稳当当的自动化 Sqoop 作业了!
AR技术融入到产品质量检测:提升效率与精度的未来趋势
元幂境认为,AR技术正革新产品质量检测,通过虚实融合提升精度、降低门槛、强化培训与协作,广泛应用于制造、电子、医疗及航空航天领域,未来结合AI将迈向智能检测新阶段。
从0到1掌握1688API:图片搜索获取技巧与避坑指南
1688图片搜索API基于图像识别技术,支持上传JPG/PNG格式图片(Base64或URL),实现同款或相似商品搜索。适用于电商选品、供应链管理等场景,提供价格、销量等多维度筛选,返回商品ID、标题、价格、销量及供应商信息。
六、Sqoop 导出
除了从数据库往 Hadoop 导,Sqoop 也能把 Hadoop 里的数据反向“倒”回数据库,做成 Export。很多场景用得上,比如 ETL 后结果回写,业务系统更新,或者补数据。这篇文章细讲了 Export 的用法,INSERT / UPDATE 模式啥区别,update-key、allowinsert 怎么配,暂存表咋用,配了完整例子,学完导出不用再踩坑!
java操作hbase报错:KeeperErrorCode=NoNode for /hbase-unsecure/master
java操作hbase报错:KeeperErrorCode=NoNode for /hbase-unsecure/master
LlamaIndex检索调优实战:分块、HyDE、压缩等8个提效方法快速改善答案质量
本文总结提升RAG检索质量的八大实用技巧:语义分块、混合检索、重排序、HyDE查询生成、上下文压缩、元数据过滤、自适应k值等,结合LlamaIndex实践,有效解决幻觉、上下文错位等问题,显著提升准确率与可引用性。

高效获取淘宝商品详情:API 开发实现链接解析的完整技术方案
2025反向海淘新机遇:依托代购系统,聚焦小众垂直品类,结合Pandabay数据选品,降本增效。系统实现智能翻译、支付风控、物流优化,助力中式养生茶等品类利润翻倍,新手也能快速入局全球市场。
Microsoft Activation Scripts v3.6 (MAS)激活工具安装教程!中文汉化版(激活工具)
Microsoft Activation Scripts v3.6(MAS)是一款开源、轻量级的批量激活工具,支持HWID、KMS38、TSforge等多种方式,可离线永久激活Win7至Win11及Office全系列。兼容旧系统如Vista,操作简单,无误报风险。
从0到1掌握1688API:商品详情获取技巧与避坑指南
1688商品详情API通过商品ID获取商品标题、价格库存、图片视频、SKU等结构化数据,支持字段定制与批发价查询,适用于电商整合与竞品分析。采用RESTful+JSON,需AppKey/Secret签名认证,保障数据实时安全。
从0到1掌握京东API:商品列表获取技巧与避坑指南
京东商品列表API是京东开放平台的核心接口,支持按类目、价格、销量等多条件筛选,实时获取商品基础信息、价格、库存及促销数据。采用HTTPS协议,JSON格式返回,适用于竞品分析与价格监控。支持分页,通过MD5签名认证,保障数据安全。
斯坦福ACE框架:让AI自己学会写prompt,性能提升17%成本降87%
斯坦福与SambaNova联合提出Agentic Context Engineering(ACE),通过让模型自生成、反思并迭代优化输入上下文,构建持续演化的“操作手册”,显著提升任务准确率,降低成本与延迟,突破传统简洁prompt局限,推动LLM高效自我改进。
从0到1了解京东商品评论api
京东商品评论API提供商品评论、价格、图片、详情等数据接口,支持按ID查询、分页筛选、多维度排序,助力电商分析、用户反馈与竞品研究,提升产品优化与购物决策效率。
FISSPACE 技术白皮书节选|因果自导机制(Causal Self-Guidance Mechanism)
FISSPACE提出因果自导机制(CSG),让智能体从被动训练迈向自主演化。通过内部能量流、压痕反馈与因果梯度闭环,构建具备自我修正与成长能力的智能系统,实现无外部奖励下的内驱进化,推动AI走向具有方向与意志的自演化时代。(238字)
【2025云栖大会】阿里云AI搜索年度发布:开启Agent时代,重构搜索新范式
2025云栖大会阿里云AI搜索专场上,发布了年度AI搜索技术与产品升级成果,推出Agentic Search架构创新与云原生引擎技术突破,实现从“信息匹配”到“智能问题解决”的跨越,支持多模态检索、百亿向量处理,助力企业降本增效,推动搜索迈向主动服务新时代。
【2025云栖大会】阿里云AI搜索年度发布:开启Agent时代,重构搜索新范式
2025云栖大会阿里云AI搜索专场上,发布了年度AI搜索技术与产品升级成果,推出Agentic Search架构创新与云原生引擎技术突破,实现从“信息匹配”到“智能问题解决”的跨越,支持多模态检索、百亿向量处理,助力企业降本增效,推动搜索迈向主动服务新时代。
未来人工智能如何重构”时间“?
时间是数学还是幻觉?从熵增到几何,从人类意识到AI智能,本文探讨时间的本质。线性、循环与拓扑模型揭示其多维可能;热力学箭头与认知局限引发哲学思辨;而AI的并行预测与信息压缩,或将重构时间本身。未来智能或不再线性行走,而是编织多维时间之网,重塑我们对存在的理解。(238字)
【2025云栖大会】阿里云AI搜索年度发布:开启Agent时代,重构搜索新范式
2025云栖大会阿里云AI搜索专场上,发布了年度AI搜索技术与产品升级成果,推出Agentic Search架构创新与云原生引擎技术突破,实现从“信息匹配”到“智能问题解决”的跨越,支持多模态检索、百亿向量处理,助力企业降本增效,推动搜索迈向主动服务新时代。
智能照明稳压节能控制器,路灯节能稳压系统,沃思智能
智能照明调控柜集电力分配、远程控制与能耗管理于一体,支持自动调光、场景切换与云平台运维,广泛应用于市政、商业及工业领域,显著节能降耗,助力智慧城市建设。

优化分布式采集的数据同步:一致性、去重与冲突解决的那些坑与招
本文讲述了作者在房地产数据采集项目中遇到的分布式数据同步问题,通过实施一致性、去重和冲突解决的“三板斧”策略,成功解决了数据重复和同步延迟问题,提高了系统稳定性。核心在于时间戳哈希保证一致性,URL归一化和布隆过滤器确保去重,分布式锁解决写入冲突。
氛围编程陷阱:为什么AI生成代码正在制造大量"伪开发者"
AI兴起催生“氛围编程”——用自然语言生成代码,看似高效实则陷阱。它让人跳过编程基本功,沦为只会提示、不懂原理的“中间商”。真实案例显示,此类项目易崩溃、难维护,安全漏洞频出。AI是技能倍增器,非替代品;真正强大的开发者,永远是那些基础扎实、能独立解决问题的人。
12 种 Pandas 测试技巧,让数据处理少踩坑
本文介绍12种实用的Pandas测试技巧,涵盖数据工厂、模式校验、属性测试、快照比对、边界用例、随机控制、NA处理、索引验证、双实现对照、性能监控、I/O往返和Join检查,帮助开发者提前发现隐藏bug,提升数据处理代码的可靠性与可维护性。
第三方电商数据 API 数据来源深度解析:合规与稳定背后的核心逻辑
本文揭秘第三方电商数据API的底层逻辑:通过官方授权、生态共享与合规采集三重来源,结合严格清洗校验,确保数据稳定、合规、高质。企业选型应关注来源合法性与场景匹配度,避开数据陷阱,实现真正数据驱动增长

UPN512技术架构白皮书(英文版)
随着AI算力超节点的演进,xPU Scale up 系统遇到新的挑战,基于此,阿里云提出UPN(Ultra Performance Network)架构,旨在构建“大规模、高性能、高可靠、低成本、可扩展” 的 Scale up 网络系统,本文阐述UPN512系统的关键架构设计。
mmBERT:307M参数覆盖1800+语言,3万亿tokens训练
mmBERT是基于ModernBERT架构的多语言编码器,在1800多种语言、3万亿token上预训练,创新性地采用逆掩码调度与级联退火语言学习(ALL),动态引入低资源语言并优化采样策略。使用Gemma 2 tokenizer,支持最长8192上下文,结合Flash Attention 2实现高效推理。在GLUE、XTREME、MTEB等基准上超越XLM-R、mGTE等模型,尤其在低资源语言和代码检索任务中表现突出,兼具高性能与高效率。

阿里云大数据AI产品月刊-2025年9月
大数据& AI 产品技术月刊【2025年 9 月】,涵盖 9 月技术速递、产品和功能发布、市场和客户应用实践等内容,帮助您快速了解阿里云大数据& AI 方面最新动态。
解析Python爬虫中的Cookies和Session管理
Cookies与Session是Python爬虫中实现状态保持的核心。Cookies由服务器发送、客户端存储,用于标识用户;Session则通过唯一ID在服务端记录会话信息。二者协同实现登录模拟与数据持久化。

【可视化大屏】全流程讲解用python的pyecharts库实现拖拽可视化大屏的背后原理,简单粗暴!
本文详解基于Python的电影TOP250数据可视化大屏开发全流程,涵盖爬虫、数据存储、分析及可视化。使用requests+BeautifulSoup爬取数据,pandas存入MySQL,pyecharts实现柱状图、饼图、词云图、散点图等多种图表,并通过Page组件拖拽布局组合成大屏,支持多种主题切换,附完整源码与视频讲解。
vLLM 吞吐量优化实战:10个KV-Cache调优方法让tokens/sec翻倍
十个经过实战检验的 vLLM KV-cache 优化方法 —— 量化、分块预填充、前缀重用、滑动窗口、ROPE 缩放、后端选择等等 —— 提升 tokens/sec。
Kubeflow-Trainer-架构学习指南
本指南系统解析Kubeflow Trainer架构,涵盖核心设计、目录结构与代码逻辑,结合学习路径与实战建议,助你掌握这一Kubernetes原生机器学习训练平台的原理与应用。
Kubeflow-KServe-架构学习指南
KServe是基于Kubernetes的生产级AI推理平台,支持多框架模型部署与管理。本指南从架构解析、代码结构到实战部署,系统讲解其核心组件如InferenceService、控制器模式及与Knative、Istio集成原理,并提供学习路径与贡献指南,助你快速掌握云原生AI服务技术。
Kubeflow-Pipelines-架构学习指南
本指南带你深入 Kubeflow Pipelines 架构,从零掌握 ML 工作流编排。涵盖核心组件、代码结构、开发调试及贡献流程,结合实战练习与学习路径,助你由使用者进阶为贡献者。
Kubeflow-Spark-Operator-架构学习指南
本指南系统解析 Spark Operator 架构,涵盖 Kubebuilder 开发、控制器设计与云原生集成。通过四阶段学习路径,助你从部署到贡献,掌握 Kubernetes Operator 核心原理与实战技能。
Kubeflow-Model-Registry-架构学习指南
Kubeflow Model Registry 是一个用于管理机器学习模型元数据的基础设施,采用 Go、Python、React 和 Kubernetes 技术栈,支持模型版本、注册与存储追踪。本指南系统解析其分层架构、核心流程与代码结构,提供从环境搭建到贡献代码的完整学习路径,助力开发者深入掌握模型管理实践。
(Pandas)Python做数据处理必选框架之一!(二):附带案例分析;刨析DataFrame结构和其属性;学会访问具体元素;判断元素是否存在;元素求和、求标准值、方差、去重、删除、排序...
DataFrame结构 每一列都属于Series类型,不同列之间数据类型可以不一样,但同一列的值类型必须一致。 DataFrame拥有一个总的 idx记录列,该列记录了每一行的索引 在DataFrame中,若列之间的元素个数不匹配,且使用Series填充时,在DataFrame里空值会显示为NaN;当列之间元素个数不匹配,并且不使用Series填充,会报错。在指定了index 属性显示情况下,会按照index的位置进行排序,默认是 [0,1,2,3,...] 从0索引开始正序排序行。
(Pandas)Python做数据处理必选框架之一!(一):介绍Pandas中的两个数据结构;刨析Series:如何访问数据;数据去重、取众数、总和、标准差、方差、平均值等;判断缺失值、获取索引...
Pandas 是一个开源的数据分析和数据处理库,它是基于 Python 编程语言的。 Pandas 提供了易于使用的数据结构和数据分析工具,特别适用于处理结构化数据,如表格型数据(类似于Excel表格)。 Pandas 是数据科学和分析领域中常用的工具之一,它使得用户能够轻松地从各种数据源中导入数据,并对数据进行高效的操作和分析。 Pandas 主要引入了两种新的数据结构:Series 和 DataFrame。

大数据与机器学习
大数据领域前沿技术分享与交流,这里不止有技术干货、学习心得、企业实践、社区活动,还有未来。