
开启云上 AIGC 动手实践,探索技术创意
面向 GenAI 时代,阿里云人工智能平台 PAI 平台自带海量开箱即用、实时更新的大模型最佳实践,提供高性能、高稳定的大模型工程化能力。本电子书精选 2024 云栖大会动手实践教程,覆盖大语言模型应用、多模态大模型微调训练、低代码 AIGC 创意设计等热门领域,为您带来 AIGC 开发全新体验。
为你的数据选择合适的分布:8个实用的概率分布应用场景和选择指南
面对真实数据不知该用哪种分布?本文精炼总结8个实战必备概率分布,涵盖使用场景、避坑指南与代码实现。从二元事件到计数、等待时间、概率建模,再到小样本处理,教你快速选择并验证合适分布,用对模型显著提升分析准确性。
基于springboot的大学生心理咨询管理系统
本研究针对大学生心理健康问题,构建基于Spring Boot、Vue等技术的心理咨询管理系统,实现心理数据电子化、智能化管理。系统支持在线预约、匿名咨询、心理测评与数据分析,兼具隐私保护与危机预警功能,提升服务可及性与干预精准度,助力高校心理健康工作科学化发展。
搭建实时足球比分系统从零到一的实战指南
构建实时足球比分系统需聚焦数据流架构:从API/爬虫获取数据,经后端处理存储,通过REST/WebSocket提供接口,前端展示。推荐使用专业API保障稳定性,结合Python/Node.js、PostgreSQL/MongoDB、Redis缓存与WebSocket实现实时推送。优先考虑法律合规与高并发应对,建议逐步迭代开发,亦可借助现成插件或服务快速上线。(238字)
阿里巴巴商品详情API秘籍!轻松获取商品详情数据
阿里巴巴商品详情API支持获取1688平台商品的标题、价格、库存、图片等核心信息,助力电商数据采集与分析。基于RESTful架构,通过App Key/Secret认证,安全可靠。提供Python示例代码,便于快速集成。
基于springboot的半成品配菜管理系统
本研究基于SpringBoot框架构建半成品配菜管理系统,旨在解决行业库存、订单与供应链管理难题。系统实现库存预警、订单自动化与供应链协同,提升企业效率与客户满意度,推动行业信息化、智能化发展,具有重要现实意义与应用价值。(238字)
PSQLException: ERROR: column “xxxxx“ does not exist
PSQLException: ERROR: column “xxxxx“ does not exist
基于springboot的游乐园管理系统
本系统基于SpringBoot与Vue技术,构建高效、智能的游乐园管理系统,实现票务电子化、设备监控智能化、员工管理自动化,提升运营效率与游客体验,推动游乐园数字化转型与智慧升级。
AI智能体开发实战:从提示工程转向上下文工程的完整指南
曾被热捧的提示工程正逐渐退潮,本文揭示其局限性,并提出“上下文工程”新范式:通过结构化提示、精准上下文管理、工具调用与统一状态,构建可扩展、可恢复、生产级的智能体工作流,推动AI系统迈向工程化与可控化。

Flink基于Paimon的实时湖仓解决方案的演进
本文源自Apache CommunityOverCode Asia 2025,阿里云专家苏轩楠分享Flink与Paimon构建实时湖仓的演进实践。深度解析Variant数据类型、Lookup Join优化等关键技术,提升半结构化数据处理效率与系统可扩展性,推动实时湖仓在生产环境的高效落地。
Dify部署全栈指南:AI从Ubuntu配置到HTTPS自动化的10倍秘籍
本文档介绍如何部署Dify后端服务及前端界面,涵盖系统环境要求、依赖安装、代码拉取、环境变量配置、服务启动、数据库管理及常见问题解决方案,适用于开发与生产环境部署。
基于springboot的教育资源共享管理系统
本研究聚焦教育资源共享管理系统,旨在通过Java、Spring Boot、MySQL与Vue技术构建高效平台,促进教育公平,提升教学质量,优化资源配置,推动教育信息化发展。
Java 项目实战基于面向对象思想的汽车租赁系统开发实例 汽车租赁系统 Java 面向对象项目实战
本文介绍基于Java面向对象编程的汽车租赁系统技术方案与应用实例,涵盖系统功能需求分析、类设计、数据库设计及具体代码实现,帮助开发者掌握Java在实际项目中的应用。
2025版基于springboot的企业考勤管理系统
本系统基于Spring Boot、Vue与MySQL,实现企业考勤自动化管理,集成生物识别与GPS定位,支持多端操作与数据可视化,提升考勤准确性与管理效率,助力企业数字化转型。(239字)
速卖通商品列表API秘籍!轻松获取商品列表数据
速卖通商品列表API支持关键词搜索、分类筛选、多语言返回及分页排序功能,适用于比价系统、库存监控、市场研究等场景。开发者可快速获取商品数据,构建自动化应用。
用Context Offloading解决AI Agent上下文污染,提升推理准确性
上下文工程是将AI所需信息(如指令、数据、工具等)动态整合到模型输入中,以提升其表现。本文探讨了“上下文污染”问题,并提出“上下文卸载”策略,通过LangGraph实现,有效缓解长文本处理中的信息干扰与模型幻觉,提升AI代理的决策准确性与稳定性。
【逆向】Python 调用 JS 代码实战:使用 pyexecjs 与 Node.js 无缝衔接
本文介绍了如何使用 Python 的轻量级库 `pyexecjs` 调用 JavaScript 代码,并结合 Node.js 实现完整的执行流程。内容涵盖环境搭建、基本使用、常见问题解决方案及爬虫逆向分析中的实战技巧,帮助开发者在 Python 中高效处理 JS 逻辑。
基于springboot的毕业旅游一站式定制系统
本系统基于Spring Boot、Vue等技术,构建毕业旅游一站式定制平台,整合旅游资源,利用大数据与人工智能实现个性化行程规划,满足毕业生多样化需求,提升旅游体验与行业效率。

从 Prompt 到 Parser:一次知乎采集的曲折经历
本文探讨了使用大模型和Playwright技术在知乎进行数据采集时遇到的挑战及其优化策略。初始方案因页面异步加载、DOM结构变化和限制策略而失败。为了提高数据采集的稳定性和可靠性,提出了增强渲染层、适配器层和回退监控机制的改进方案。通过这些改进,可以有效应对页面异步加载和DOM变化带来的问题,同时规避限制策略的影响,从而实现更高效、稳定的数据采集。
广东制造企业必看!MES系统到底是什么?3分钟带你全面了解!
MES系统是连接企业管理与生产执行的关键桥梁,助力制造企业实现提质增效、降本减 waste。尤其在广东,面对激烈竞争,MES成为推动智能制造、实现数字化转型的核心工具。珠海盈致科技专注电子制造业,提供SiMDA-MOM体系及数字化升级解决方案,助力企业迈向智能制造新高度。
从零搭建RAG应用:跳过LangChain,掌握文本分块、向量检索、指代消解等核心技术实现
本文详解如何从零搭建RAG(检索增强生成)应用,跳过LangChain等框架,深入掌握文本解析、分块、向量检索、对话记忆、指代消解等核心技术,提升系统可控性与优化能力。
基于python大数据的天气可视化分析预测系统
本研究探讨基于Python的天气预报数据可视化系统,旨在提升天气数据获取、分析与展示的效率与准确性。通过网络爬虫技术快速抓取实时天气数据,并运用数据可视化技术直观呈现天气变化趋势,为公众出行、农业生产及灾害预警提供科学支持,具有重要的现实意义与应用价值。
解决推理能力瓶颈,用因果推理提升LLM智能决策
从ChatGPT到AI智能体,标志着AI从对话走向自主执行复杂任务的能力跃迁。AI智能体可完成销售、旅行规划、外卖点餐等多场景任务,但其发展受限于大语言模型(LLM)的推理能力。LLM依赖统计相关性,缺乏对因果关系的理解,导致在非确定性任务中表现不佳。结合因果推理与内省机制,有望突破当前AI智能体的推理瓶颈,提升其决策准确性与自主性。
【1分钟解密】如何让 AI 大模型推荐你的品牌
随着AI逐渐取代传统搜索,企业如何让AI“看见”并“信任”你?GEO(生成式引擎优化)应运而生,它不仅是SEO的延伸,更是让AI主动推荐你的关键策略。通过优化内容结构、提升权威性与可读性,GEO助力企业在AI生成的答案中占据一席之地,赢得未来流量入口。
1688图片搜索API技术内幕:从特征提取到向量匹配的完整实现路径
1688图片搜索相似商品API基于计算机视觉技术,支持通过图片查找同款或相似商品,适用于电商选品与供应链管理。API采用RESTful设计,支持JPG/PNG格式,返回含商品ID、标题、价格、销量等JSON数据,提供Python调用示例。前往体验:c0b.cc/R4rbK2
构建可观测、可治理的企业智能体:平台核心能力解析
在人工智能快速发展的背景下,企业智能体已成为推动数字化转型的重要力量。然而,其复杂性和不可预测性也带来了可靠性、透明性和可控性等挑战。构建具备全景可观测性、多层治理框架、智能体协同与知识管理、人类监督机制的智能体体系,成为企业实现安全、合规、高效运营的关键。通过系统化实施路径,企业可全面提升智能体的透明度与治理能力,把握智能时代发展机遇。
基于python评论分析的商品推荐系统设计
本文介绍了多种开发技术,包括Python集成开发环境PyCharm、自然语言处理工具SnowNLP、关系型数据库MySQL、Python语言特性、Django Web框架以及协同过滤算法。内容涵盖各技术的基本功能、特点及其在实际开发中的应用,适用于初学者和开发者了解相关工具与框架的使用与优势。

超越传统XPath:用LLM理解复杂网页信息
本文深入探讨网页信息抽取技术的演进,从传统 XPath/CSS 结构匹配,到结合 LLM(大语言模型)的语义理解方法。分析了旧技术在动态渲染、结构变化和语义识别方面的局限,并通过架构图、实验数据和示例代码展示 LLM 在新闻、电商、社交等复杂场景中的高效应用。同时强调爬虫代理等基础设施的重要性,为信息抓取提供稳定网络环境。
1688商品详情API技术深度解析:从接口架构到数据融合实战
1688商品详情API(item_get接口)可通过商品ID获取标题、价格、库存、SKU等核心数据,适用于价格监控、供应链管理等场景。支持JSON格式返回,需企业认证。Python示例展示如何调用接口获取商品信息。
基于python+vue的居家办公系统的设计与实现
本居家办公系统基于B/S架构,采用Python语言及Django框架开发,结合MySQL数据库和Vue.js前端技术,实现家具销售库存的科学化、规范化管理。系统旨在提升办公效率,降低数据错误率,优化信息管理流程,适应多行业信息化发展需求,具有良好的扩展性与实用性。
Mixture of Experts架构的简要解析
Mixture of Experts(MoE)架构起源于1991年,其核心思想是通过多个专门化的“专家”网络处理输入的不同部分,并由门控网络动态组合输出。这种架构实现了稀疏激活,仅激活部分专家,从而在模型规模与计算成本之间取得平衡。MoE的关键在于门控机制的设计,如线性门控、噪声Top-K门控等,确保模型能根据输入特征自适应选择专家。
Transformer架构的简要解析
Transformer架构自2017年提出以来,彻底革新了人工智能领域,广泛应用于自然语言处理、语音识别等任务。其核心创新在于自注意力机制,通过计算序列中任意两个位置的相关性,打破了传统循环神经网络的序列依赖限制,实现了高效并行化与长距离依赖建模。该架构由编码器和解码器组成,结合多头注意力、位置编码、前馈网络等模块,大幅提升了模型表达能力与训练效率。从BERT到GPT系列,几乎所有现代大语言模型均基于Transformer构建,成为深度学习时代的关键技术突破之一。
大语言模型的核心算法——简要解析
大语言模型的核心算法基于Transformer架构,以自注意力机制为核心,通过Q、K、V矩阵动态捕捉序列内部关系。多头注意力增强模型表达能力,位置编码(如RoPE)解决顺序信息问题。Flash Attention优化计算效率,GQA平衡性能与资源消耗。训练上,DPO替代RLHF提升效率,MoE架构实现参数扩展,Constitutional AI实现自监督对齐。整体技术推动模型在长序列、低资源下的性能突破。
量子机器学习入门:三种数据编码方法对比与应用
在量子机器学习中,数据编码方式决定了量子模型如何理解和处理信息。本文详解角度编码、振幅编码与基础编码三种方法,分析其原理、实现及适用场景,帮助读者选择最适合的编码策略,提升量子模型性能。
SQL 学习笔记 - 多表关系与多表查询
数据库多表关系包括一对多、多对多和一对一,常用外键关联。多表查询方式有隐式/显式内连接、外连接、子查询等,支持别名和条件筛选。子查询分为标量、列、行、表子查询,常用于复杂查询场景。
基于python+vue的商城购物系统
本文介绍了电子商务的发展背景及研究现状,分析了当前电商市场的挑战与机遇,提出了自建电商平台的优势,旨在通过创新设计与技术实现(如Python、Django、B/S架构等),构建一个高效、低成本、用户导向的电商系统,以提升企业竞争力。

大数据与机器学习
大数据领域前沿技术分享与交流,这里不止有技术干货、学习心得、企业实践、社区活动,还有未来。