一是规模挑战,即生成代码的量。
二是准确性、可靠性。早期代码生成的准确率大概是 40%、50%,根本不能用。工业界一般在达到 80%、90% 之后才会用。如果达到 95%,甚至是 98%,那就更好了。
三是代码理解能力是不是更强,像逻辑关系、上下文联系等等,相当于 AI 还可以联想到过去的代码。这方面,在今天也是对 AI 编程的一个主要限制。比如上下文理解,因为我们写代码或者整个代码的演化时间还是很长的,我经常和学生讲,你开发产品的第一个版本也许一两个月就结束了,但如果你的产品开发得比较好、有生命力,整个演化过程也许是几年甚至十几年。
四是人机交互智能。这点放到今天的语境里来看相对更复杂的一点是,有时开发者不止一个人。以前简单的模式是每个开发人员会有一个助手,但现在可能是一个开发者拥有好几个机器人,甚至是机器人与机器人之间的协调。最近也有论文提到,去做一个类似管理人机交互过程,或者说是任务调度的平台。
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。