开发者社区 > ModelScope模型即服务 > 语音 > 正文

DNS2020 盲测集 结果不一致

已解决

我在no reverb上测试的结果如下: image.png

WB pesq 3.13 NB pesq 3.53 STOI 97.52 SISNR 19.03

目前官方提供的权重是否和DNS训练出来的权重不一致?

展开
收起
游客fgl4yoalowavq 2022-11-22 16:58:40 950 0
2 条回答
写回答
取消 提交回答
  • 您好,我们针对DNS2020测试集复核了ModelScope官方模型的效果,全部指标得分都符合或微高于官网上公开的分数。以下是我们的测试代码,供您比较是否有差异:

    from pypesq import pesq as pesq_nb
    from pesq import pesq as pesq_wb
    from pystoi import stoi
    import soundfile as sf
    import librosa
    import numpy as np
    import sys
    
    audio_root='/data/DNS-Challenge/datasets/test_set/synthetic/no_reverb'
    data_to_score='/data/speech_frcrn_ans_cirm_16k/dns_out'
    
    
    def cal_sisnr(ref_sig, out_sig, eps=1e-8):
        """Calcuate Scale-Invariant Source-to-Noise Ratio (SI-SNR)
        Args:
            ref_sig: numpy.ndarray, [T]
            out_sig: numpy.ndarray, [T]
        Returns:
            SISNR
        """
        assert len(ref_sig) == len(out_sig)
        ref_sig = ref_sig - np.mean(ref_sig)
        out_sig = out_sig - np.mean(out_sig)
        ref_energy = np.sum(ref_sig ** 2) + eps
        proj = np.sum(ref_sig * out_sig) * ref_sig / ref_energy
        noise = out_sig - proj
        ratio = np.sum(proj ** 2) / (np.sum(noise ** 2) + eps)
        sisnr = 10 * np.log(ratio + eps) / np.log(10.0)
        return sisnr
    
    wav_list = audio_root + '/wav.lst'
    f = open(wav_list, 'r')
    
    scores_pesq_wb = []
    scores_pesq_nb = []
    scores_stoi = []
    scores_sisnr = []
    
    USE_16K = True
    while 1:
        audio_name = f.readline().strip()
        if not audio_name: break
    
        target_path = audio_root+"/target/"+audio_name
        noisy_path = data_to_score + '/' + audio_name
        clean, fs = sf.read(target_path)
        clean = librosa.resample(clean, fs, 16000)
        noisy, fs = sf.read(noisy_path)
        noisy = librosa.resample(noisy, fs, 16000)
        min_frames = min(clean.shape[0],noisy.shape[0])
        clean = clean[:min_frames]
        noisy = noisy[:min_frames]
        assert len(clean) == len(noisy), print('Wave lengths are mismatchted! target: {}, noisy: {}'.format(len(clean), len(noisy)))
    
    
        if fs > 16000:
            clean_16k = librosa.resample(clean, fs, 16000)
            noisy_16k = librosa.resample(noisy, fs, 16000)
            min_frames = min(clean_16k.shape[0],noisy_16k.shape[0])
            clean_16k = clean_16k[:min_frames]
            noisy_16k = noisy_16k[:min_frames]
            fs_16k = 16000
        elif fs == 16000:
            clean_16k = clean
            noisy_16k = noisy
            fs_16k = fs
        else:
            print('Sampling rate is less than 16000 !')
            break
    
        ## PESQ is scored only at 16000 Hz or 8000 Hz
        pesq_score_wb = pesq_wb(fs_16k, clean_16k, noisy_16k, 'wb')
        pesq_score_nb = pesq_nb(clean_16k, noisy_16k, fs_16k)
        ##calcualte SI-SNR and STOI at 16000 Hz sampliing rate
        if USE_16K:
            sisnr_score=cal_sisnr(clean_16k, noisy_16k)
            stoi_score = stoi(clean, noisy, fs, extended=False) * 100
        else:
            sisnr_score=cal_sisnr(clean, noisy)
            stoi_score = stoi(clean, noisy, fs, extended=False) * 100
    
        scores_sisnr.append(sisnr_score)
        scores_pesq_wb.append(pesq_score_wb)
        scores_pesq_nb.append(pesq_score_nb)
        scores_stoi.append(stoi_score)
        print('File: {}, WB_PESQ: {}, PESQ: {}, STOI: {}, SI-SNR: {}'.format(audio_name, np.around(pesq_score_wb, decimals=2), np.around(pesq_score_nb, decimals=2), np.around(stoi_score, decimals=2), np.around(sisnr_score, decimals=2)))
    
    scores_pesq_wb = np.asarray(scores_pesq_wb)
    scores_pesq_nb = np.asarray(scores_pesq_nb)
    scores_stoi = np.asarray(scores_stoi)
    scores_sisnr = np.asarray(scores_sisnr)
    
    pesq_wb_mean = np.around(np.mean(scores_pesq_wb), decimals=2)
    pesq_nb_mean = np.around(np.mean(scores_pesq_nb), decimals=2)
    stoi_mean = np.around(np.mean(scores_stoi), decimals=2)
    si_snr_mean = np.around(np.mean(scores_sisnr), decimals=2)
    
    print('Average score, WB_PESQ: {}, PESQ: {}, STOI: {}, SI-SNR: {}'.format(pesq_wb_mean, pesq_nb_mean, stoi_mean, si_snr_mean))
    f.close()
    
    2022-11-23 15:32:40
    赞同 展开评论 打赏
  • 您好,我测试noisy的结果如下 image.png 这里和各种论文中的DNS2020测试集数据应该是一致的。我看了您提供的代码,测试程序中使用的pesqwb,pesqnb,stoi,都是一致的,另外配置方式也一致。所以应该可以排除测试程序的问题。 我这边拆解了github上的代码,并且在缓存中加载了FRCRN的模型权重。enhane了官方提供的测试noisywav,效果和官方一致。 但是从模型中,1.没有看出使用了CBAM结构,2.另外这个模型似乎是两个Unet级联,3.从SElayer实现来看,似乎是一个非因果模型,似乎论文中没有提到这个模块。所以,我很疑惑是不是提供的模型和模型权重有问题。 这里贴出SElayer的代码

    class SELayer(nn.Module):

    def __init__(self, channel, reduction=16):
        super(SELayer, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.fc_r = nn.Sequential(
            nn.Linear(channel, channel // reduction), nn.ReLU(inplace=True),
            nn.Linear(channel // reduction, channel), nn.Sigmoid())
        self.fc_i = nn.Sequential(
            nn.Linear(channel, channel // reduction), nn.ReLU(inplace=True),
            nn.Linear(channel // reduction, channel), nn.Sigmoid())
    
    def forward(self, x):
        b, c, _, _, _ = x.size()
        x_r = self.avg_pool(x[:, :, :, :, 0]).view(b, c)
        x_i = self.avg_pool(x[:, :, :, :, 1]).view(b, c)
        y_r = self.fc_r(x_r).view(b, c, 1, 1, 1) - self.fc_i(x_i).view(
            b, c, 1, 1, 1)
        y_i = self.fc_r(x_i).view(b, c, 1, 1, 1) + self.fc_i(x_r).view(
            b, c, 1, 1, 1)
        y = torch.cat([y_r, y_i], 4)
        return x * y
    
    2022-11-23 17:42:29
    赞同 展开评论 打赏

包括语音识别、语音合成、语音唤醒、声学设计及信号处理、声纹识别、音频事件检测等多个领域

热门讨论

热门文章

相关电子书

更多
低代码开发师(初级)实战教程 立即下载
冬季实战营第三期:MySQL数据库进阶实战 立即下载
阿里巴巴DevOps 最佳实践手册 立即下载