开发者社区> 问答> 正文

python怎么实现预测

python怎么实现预测

展开
收起
云计算小粉 2018-05-10 20:11:04 2142 0
1 条回答
写回答
取消 提交回答
  • import scipy.stats as st
    import matplotlib.pyplot as plt
    import numpy as np
    import collections
    from sklearn.preprocessing import MinMaxScaler
    import numpy as np
    import csv
    import math
    from pylab import*
    import matplotlib.mlab as mlab
    from sklearn.utils import shuffle
    import math
    i=0
    j=[]
    data = []
    X = []
    indicess = []
    xback =24
    with open(r'D:error01冬季雨天.csv') as f:

    reader = csv.reader(f)
    for row in reader:
          data.append(row[:])#提取出每一行中的2:14列

    data1=[]
    data = np.array(data)
    m,n=np.shape(data)
    for i in range(m):

    for j in range(n):
        #print(data[i][j])
        data[i][j] = data[i][j].astype('float64')#是从第三列开始的

    for i in range(m):

    for j in range(n):
        #print(data[i][j])
        data1.append(data[i][j])

    print("the type of data1",type(data1[1]))
    data = data.astype('float64')

    print(data)

    print("the shape of data",len(data))

    定义最大似然函数后的结果

    def mle(x):

    u = np.mean(x)
    thea=np.std(x)
    return u,thea
    

    确定了分布

    print(mle(data))
    u,thea=mle(data)
    print(u)
    print(thea)
    y = st.norm.pdf(data[:6],u,thea)
    print(y)
    count, bins, ignored =plt.hist(data,bins=20,normed=False)
    print("count",len(count))
    print("bins",len(bins))
    plt.plot(bins[:20],count,"r")
    pro=count/np.sum(count)
    plt.xlabel("x")
    plt.ylabel("probability density")
    plt.show()

    plt.plot(bins[:20],pro,"r",lw=2)
    plt.show()
    low=-1.65*thea+u #对应90%的置信度
    up=1.65*thea+u
    data0=[]
    print("下界为",low)
    print("上界为:",up)

    with open(r'D:真实值冬季雨天.csv') as f:

    reader = csv.reader(f)
    for row in reader:
    
            data0.append(row[:])  # 提取出每一行中的2:14列

    data01=[]
    data0 = np.array(data0)

    print(data0)

    m,n=np.shape(data0)
    print("the shape of data0",np.shape(data0))
    for i in range(m):

    for j in range(n):
        #print(data0[i][j])
        data0[i][j] = data0[i][j].astype('float64')#是从第三列开始的

    for i in range(m):

    for j in range(n):
        #print(data[i][j])
        data01.append(data0[i][j])

    print("the type of data1",type(data1[1]))

    data0 = data0.astype('float64')
    data01=map(eval, data01)
    print(np.shape(data0))
    print(data0[:4])
    print(data0[:2,0])
    datamax=np.max(data0[:,0])
    datamax=np.max(data0[:,0])
    p_low = list(map(lambda x: (x-abs(low)*datamax) , data0[:,0]))
    p_up = list(map(lambda x: (x+up *datamax), data0[:,1]))
    x=[i for i in range(len(p_low))]
    print(x)

    显示置信区间范围

    l=90
    k=0
    plt.plot(x[k:l],p_low[k:l], 'g', lw=2, label='下界曲线')
    plt.plot(x[k:l],p_up[k:l], 'g', lw=2, label='上界曲线')
    plt.plot(x[k:l],data0[k:l,0], 'b', lw=2, label='真实值')
    plt.plot(data0[k:l,1], 'r', lw=2, label='预测值')
    plt.fill_between(x[k:l],p_low[k:l],p_up[k:l],color="c",alpha=0.1)
    plt.title('置信区间', fontsize=18) # 表的名称
    plt.legend(loc=0, numpoints=1)
    leg = plt.gca().get_legend()
    ltext = leg.get_texts()
    plt.setp(ltext, fontsize='small')

    负责绘制与图或轴相关的数据

    savefig('D:/十折交叉验证/LSTM1.jpg')

    plt.show()

    评价置信区间PICP,PINAW,CWC,PICP用来评价预测区间的覆盖率,PINAW预测区间的宽带

    count=0

    for i in range(len(p_low)):

    if data0[i][1]>=p_low[i] and data0[i][1]<=p_up[i]:
        count=count+1
    

    PICP = count/len(p_low)
    print("PICP",PICP)

    对于概率性的区间预测方法,在置信度一样的情况下,预测区间越窄越好

    max0=np.max(data0[:,1])
    min0=np.min(data0[:,1])
    sum0=list(map(lambda x: (x[1]-x[0]) , zip(p_low,p_up)))
    sum1=np.sum(sum0)/len(sum0)
    PINAW = 1/(max0-min0)*sum1
    print("PINAW",PINAW)

    综合指标的评价cwcCWC = PINAW(1+R(PICP)np.exp(-y(PICP-U)))

    g=90#取值在50-100
    e0=math.exp(-g*(PICP-u))
    if PICP>=u:

    r=0

    else:

    r=1

    CWC=PINAW(1+rPICP*e0)
    print("CWC",CWC)

    2019-07-17 22:25:11
    赞同 展开评论 打赏
问答分类:
问答标签:
问答地址:
问答排行榜
最热
最新

相关电子书

更多
From Python Scikit-Learn to Sc 立即下载
Data Pre-Processing in Python: 立即下载
双剑合璧-Python和大数据计算平台的结合 立即下载