一、基本实现
ArrayList:使用了数组实现,可以认为它封装了对内部数组的操作
优点:操作读取操作效率高,基于数组实现的,可以为null值,可以允许重复元素,有序,异步。
缺点:由于它是由动态数组实现的,不适合频繁的对元素的插入和删除操作,因为每次插入和删除都需要移动数组中的元素。
LinkedList:使用了双向链表数据结构
优点:LinkedList由双链表实现,增删由于不需要移动底层数组数据,其底层是链表实现的,只需要修改链表节点指针,对元素的插入和删除效率较高。
缺点: 遍历效率较低。HashMap和双链表也有关系。
二、ArrayList
实现原理:
ArrayList底层是一个变长的数组,基本上等同于Vector,但是Vector对writeObjec()t和readObject()方法实现了同步。
静态变量
/**
* 默认初始容量
*/
private static final int DEFAULT_CAPACITY = 10;
/**
*用于空实例的共享空数组实例。
*/
private static final Object[] EMPTY_ELEMENTDATA = {};
/**
共享的空数组实例用于默认大小的空实例。
*/
private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
/**
数组列表中存储元素的数组缓冲区。
*/
transient Object[] elementData; // non-private to simplify nested class access
/**
数组列表的大小
*/
private int size;
add(E e)方法
public boolean add(E e) {
// 检查是否需要扩容
ensureCapacityInternal(size + 1);
// 把元素插入到最后一位
elementData[size++] = e;
return true;
}
private void ensureCapacityInternal(int minCapacity) {
ensureExplicitCapacity(calculateCapacity(elementData, minCapacity));
}
private static int calculateCapacity(Object[] elementData, int minCapacity) {
// 如果是空数组DEFAULTCAPACITY_EMPTY_ELEMENTDATA,就初始化为默认大小10
if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
return Math.max(DEFAULT_CAPACITY, minCapacity);
}
return minCapacity;
}
private void ensureExplicitCapacity(int minCapacity) {
modCount++;
if (minCapacity - elementData.length > 0)
// 扩容
grow(minCapacity);
}
private void grow(int minCapacity) {
int oldCapacity = elementData.length;
// 新容量为旧容量的1.5倍
int newCapacity = oldCapacity + (oldCapacity >> 1);
// 如果新容量发现比需要的容量还小,则以需要的容量为准
if (newCapacity - minCapacity < 0)
newCapacity = minCapacity;
// 如果新容量已经超过最大容量了,则使用最大容量
if (newCapacity - MAX_ARRAY_SIZE > 0)
newCapacity = hugeCapacity(minCapacity);
// 以新容量拷贝出来一个新数组
elementData = Arrays.copyOf(elementData, newCapacity);
}
具体步骤如下:
- 检查是否需要扩容;
- 如果elementData等于DEFAULTCAPACITY_EMPTY_ELEMENTDATA则初始化容量大小为DEFAULT_CAPACITY;
- 新容量是老容量的1.5倍(oldCapacity + (oldCapacity >> 1)),如果加了这么多容量发现比需要的容量还小,则以需要的容量为准;
- 创建新容量的数组并把老数组拷贝到新数组;
add(int index, E element)方法
添加元素到指定位置。
public void add(int index, E element) {
// 检查是否越界
rangeCheckForAdd(index);
// 检查是否需要扩容
ensureCapacityInternal(size + 1);
// 将inex及其之后的元素往后挪一位,则index位置处就空出来了
System.arraycopy(elementData, index, elementData, index + 1,
size - index);
// 将元素插入到index的位置
elementData[index] = element;
// 大小增1
size++;
}
private void rangeCheckForAdd(int index) {
if (index > size || index < 0)
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
具体步骤如下:
- 检查索引是否越界;
- 检查是否需要扩容;
- 把插入索引位置后的元素都往后挪一位;
- 在插入索引位置放置插入的元素; 5. 大小加1;
addAll 方法
求两个集合的并集。
/**
- 将集合c中所有元素添加到当前ArrayList中
*/
public boolean addAll(Collection<? extends E> c) {
// 将集合c转为数组
Object[] a = c.toArray();
int numNew = a.length;
// 检查是否需要扩容
ensureCapacityInternal(size + numNew);
// 将c中元素全部拷贝到数组的最后
System.arraycopy(a, 0, elementData, size, numNew);
// 大小增加c的大小
size += numNew;
// 如果c不为空就返回true,否则返回false
return numNew != 0;
}
get(int index)方法
获取指定索引位置的元素,
public E get(int index) {
// 检查是否越界
rangeCheck(index);
// 返回数组index位置的元素
return elementData(index);
}
private void rangeCheck(int index) {
if (index >= size)
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
E elementData(int index) {
return (E) elementData[index];
}
具体步骤如下:
- 检查索引是否越界,这里只检查是否越上界,如果越上界抛出IndexOutOfBoundsException异常,如果越下界抛出的是ArrayIndexOutOfBoundsException异常。
- 返回索引位置处的元素;
remove(int index)方法
删除指定索引位置的元素。
public E remove(int index) {
// 检查是否越界
rangeCheck(index);
modCount++;
// 获取index位置的元素
E oldValue = elementData(index);
// 如果index不是最后一位,则将index之后的元素往前挪一位
int numMoved = size - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index, numMoved);
// 将最后一个元素删除,帮助GC
elementData[--size] = null; // clear to let GC do its work
// 返回旧值
return oldValue;
}
1. 检查索引是否越界;
- 获取指定索引位置的元素;
- 如果删除的不是最后一位,则其它元素往前移一位;
- 将最后一位置为null,方便GC回收;
- 返回删除的元素。
可以看到,ArrayList删除元素的时候并没有缩容。
总结
- ArrayList内部使用数组存储元素,当数组长度不够时进行扩容,每次加一半的空间,ArrayList不会进行缩容;
- ArrayList支持随机访问,通过索引访问元素极快,时间复杂度为O(1);
- ArrayList添加元素到尾部极快,平均时间复杂度为O(1);
- ArrayList添加元素到中间比较慢,因为要搬移元素,平均时间复杂度为O(n);
- ArrayList从尾部删除元素极快,时间复杂度为O(1);
- ArrayList从中间删除元素比较慢,因为要搬移元素,平均时间复杂度为O(n);