Java性能优化:Stream如何提高遍历集合效率?

简介:   通过上面两个简单的例子,我们可以发现,Stream结合Lambda表达式实现遍历筛选功能非常得简洁和便捷。

  现在很多大数据量系统中都存在分表分库的情况。

  例如,电商系统中的订单表,常常使用用户ID的Hash值来实现分表分库,这样是为了减少单个表的数据量,优化用户查询订单的速度。

  但在后台管理员审核订单时,他们需要将各个数据源的数据查询到应用层之后进行合并操作。

  例如,当我们需要查询出过滤条件下的所有订单,并按照订单的某个条件进行排序,单个数据源查询出来的数据是可以按照某个条件进行排序的,但多个数据源查询出来已经排序好的数据,并不代表合并后是正确的排序,所以我们需要在应用层对合并数据集合重新进行排序。

  在Java8之前,我们通常是通过for循环或者Iterator迭代来重新排序合并数据,又或者通过重新定义Collections.sorts的Comparator方法来实现,这两种方式对于大数据量系统来说,效率并不是很理想。

  Java8中添加了一个新的接口类Stream,他和我们之前接触的字节流概念不太一样,Java8集合中的Stream相当于高级版的Iterator,他可以通过Lambda 表达式对集合进行各种非常便利、高效的聚合操作(Aggregate Operation),或者大批量数据操作 (Bulk Data Operation)。

  Stream的聚合操作与数据库SQL的聚合操作sorted、filter、map等类似。我们在应用层就可以高效地实现类似数据库SQL的聚合操作了,而在数据操作方面,Stream不仅可以通过串行的方式实现数据操作,还可以通过并行的方式处理大批量数据,提高数据的处理效率。

  接下来我们就用一个简单的例子来体验下Stream的简洁与强大。

  这个Demo的需求是过滤分组一所中学里身高在160cm以上的男女同学,我们先用传统的迭代方式来实现,代码如下:

  Map> stuMap=new HashMap>(); for (Student stu: studentsList) { if (stu.getHeight() > 160) { //如果身高大于160 if (stuMap.get(stu.getSex())==null) { //该性别还没分类 List list=new ArrayList(); //新建该性别学生的列表 list.add(stu);//将学生放进去列表 stuMap.put(stu.getSex(), list);//将列表放到map中 } else { //该性别分类已存在 stuMap.get(stu.getSex()).add(stu);//该性别分类已存在,则直接放进去即可 } } }

  我们再使用Java8中的Stream API进行实现:

  1.串行实现

  Map> stuMap=stuList.stream().filter((Student s) -> s.getHeight() > 160) .collect(Collectors.groupingBy(Student ::getSex));

  2.并行实现

  Map> stuMap=stuList.parallelStream().filter((Student s) -> s.getHeight() > 160) .collect(Collectors.groupingBy(Student ::getSex));

  通过上面两个简单的例子,我们可以发现,Stream结合Lambda表达式实现遍历筛选功能非常得简洁和便捷。

  上面我们初步了解了Java8中的Stream API,那Stream是如何做到优化迭代的呢?并行又是如何实现的?下面我们就透过Stream源码剖析Stream的实现原理。

  在了解Stream的实现古玩原理之前,我们先来了解下Stream的操作分类,因为他的操作分类其实是实现高效迭代大数据集合的重要原因之一。为什么这样说,分析完你就清楚了。

  官方将Stream中的操作分为两大类:中间操作(Intermediate operations)和终结操作(Terminal operations)。中间操作只对操作进行了记录,即只会返回一个流,不会进行计算操作,而终结操作是实现了计算操作。

  中间操作又可以分为无状态(Stateless)与有状态(Stateful)操作,前者是指元素的处理不受之前元素的影响,后者是指该操作只有拿到所有元素之后才能继续下去。

  终结操作又可以分为短路(Short-circuiting)与非短路(Unshort-circuiting)操作,前者是指遇到某些符合条件的元素就可以得到最终结果,后者是指必须处理完所有元素才能得到最终结果。

目录
相关文章
|
8天前
|
缓存 算法 Java
本文聚焦于Java内存管理与调优,介绍Java内存模型、内存泄漏检测与预防、高效字符串拼接、数据结构优化及垃圾回收机制
在现代软件开发中,性能优化至关重要。本文聚焦于Java内存管理与调优,介绍Java内存模型、内存泄漏检测与预防、高效字符串拼接、数据结构优化及垃圾回收机制。通过调整垃圾回收器参数、优化堆大小与布局、使用对象池和缓存技术,开发者可显著提升应用性能和稳定性。
27 6
|
6天前
|
Java
Java 8 引入的 Streams 功能强大,提供了一种简洁高效的处理数据集合的方式
Java 8 引入的 Streams 功能强大,提供了一种简洁高效的处理数据集合的方式。本文介绍了 Streams 的基本概念和使用方法,包括创建 Streams、中间操作和终端操作,并通过多个案例详细解析了过滤、映射、归并、排序、分组和并行处理等操作,帮助读者更好地理解和掌握这一重要特性。
14 2
|
6天前
|
安全 Java
Java多线程集合类
本文介绍了Java中线程安全的问题及解决方案。通过示例代码展示了使用`CopyOnWriteArrayList`、`CopyOnWriteArraySet`和`ConcurrentHashMap`来解决多线程环境下集合操作的线程安全问题。这些类通过不同的机制确保了线程安全,提高了并发性能。
|
10天前
|
存储 Java 开发者
在 Java 中,如何遍历一个 Set 集合?
【10月更文挑战第30天】开发者可以根据具体的需求和代码风格选择合适的遍历方式。增强for循环简洁直观,适用于大多数简单的遍历场景;迭代器则更加灵活,可在遍历过程中进行更多复杂的操作;而Lambda表达式和`forEach`方法则提供了一种更简洁的函数式编程风格的遍历方式。
|
10天前
|
存储 Java 开发者
Java中的集合框架深入解析
【10月更文挑战第32天】本文旨在为读者揭开Java集合框架的神秘面纱,通过深入浅出的方式介绍其内部结构与运作机制。我们将从集合框架的设计哲学出发,探讨其如何影响我们的编程实践,并配以代码示例,展示如何在真实场景中应用这些知识。无论你是Java新手还是资深开发者,这篇文章都将为你提供新的视角和实用技巧。
11 0
|
算法 安全 Java
Java 性能优化:35个小细节,让你提升Java代码运行的效率
  代码优化,一个很重要的课题。可能有些人觉得没用,一些细小的地方有什么好修改的,改与不改对于代码的运行效率有什么影响呢?这个问题我是这么考虑的,就像大海里面的鲸鱼一样,它吃一条小虾米有用吗?没用,但是,吃的小虾米一多之后,鲸鱼就被喂饱了。   代码优化也是一样,如果项目着眼于尽快无BUG上线,那么此时可以抓大放小,代码的细节可以不精打细磨;但是如果有足够的时间开发、维护代码,这时候就必须考虑每个可以优化的细节了,一个一个细小的优化点累积起来,对于代码的运行效率绝对是有提升的。
247 0
|
机器学习/深度学习 算法 Java
11月27日云栖精选夜读 | Java性能优化的50个细节
在JAVA程序中,性能问题的大部分原因并不在于JAVA语言,而是程序本身。养成良好的编码习惯非常重要,能够显著地提升程序性能。 1. 尽量在合适的场合使用单例 使用单例可以减轻加载的负担,缩短加载的时间,提高加载的效率,但并不是所有地方都适用于单例,简单来说,单例主要适用于以下三个方面: 第一,控制资源的使用,通过线程同步来控制资源的并发访问; 第二,控制实例的产生,以达到节约资源的目的; 第三,控制数据共享,在不建立直接关联的条件下,让多个不相关的进程或线程之间实现通信。
2956 0
|
Java 程序员 Android开发
10月31日云栖精选夜读 | Java性能优化的50个细节(珍藏版)
在JAVA程序中,性能问题的大部分原因并不在于JAVA语言,而是程序本身。养成良好的编码习惯非常重要,能够显著地提升程序性能。 1. 尽量在合适的场合使用单例 使用单例可以减轻加载的负担,缩短加载的时间,提高加载的效率,但并不是所有地方都适用于单例,简单来说,单例主要适用于以下三个方面: 第一,控制资源的使用,通过线程同步来控制资源的并发访问; 第二,控制实例的产生,以达到节约资源的目的; 第三,控制数据共享,在不建立直接关联的条件下,让多个不相关的进程或线程之间实现通信。
3028 0